Do you want to publish a course? Click here

Quantifying the impact of mergers on the angular momentum of simulated galaxies

52   0   0.0 ( 0 )
 Added by Claudia Lagos
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use EAGLE to quantify the effect galaxy mergers have on the stellar specific angular momentum of galaxies, $j_{rm stars}$. We split mergers into: dry (gas-poor)/wet (gas-rich), major/minor, and different spin alignments and orbital parameters. Wet (dry) mergers have an average neutral gas-to-stellar mass ratio of $1.1$ ($0.02$), while major (minor) mergers are those with stellar mass ratios $ge 0.3$ ($0.1-0.3$). We correlate the positions of galaxies in the $j_{rm stars}$-stellar mass plane at $z=0$ with their merger history, and find that galaxies of low spins suffered dry mergers, while galaxies of normal/high spins suffered predominantly wet mergers, if any. The radial $j_{rm stars}$ profiles of galaxies that went through dry mergers are deficient by $approx 0.3$~dex at $rlesssim 10,r_{50}$ (with $r_{50}$ being the half-stellar mass radius), compared to galaxies that went through wet mergers. Studying the merger remnants reveals that dry mergers reduce $j_{rm stars}$ by $approx 30$%, while wet mergers increase it by $approx 10$%, on average. The latter is connected to the build-up of the bulge by newly formed stars of high rotational speed. Moving from minor to major mergers accentuates these effects. When the spin vectors of the galaxies prior to the dry merger are misaligned, $j_{rm stars}$ decreases to a greater magnitude, while in wet mergers co-rotation and high orbital angular momentum efficiently spun-up galaxies. We predict what would be the observational signatures in the $j_{rm stars}$ profiles driven by dry mergers: (i) shallow radial profiles and (ii) profiles that rise beyond $approx 10,r_{50}$, both of which are significantly different from spiral galaxies.



rate research

Read More

The NIHAO cosmological simulations form a collection of a hundred high-resolution galaxies. We used these simulations to test the impact of stellar feedback on the morphology of the HI distribution in galaxies. We ran a subsample of twenty of the galaxies with different parameterizations of stellar feedback, looking for differences in the HI spatial distribution and morphology. We found that different feedback models do leave a signature in HI, and can potentially be compared with current and future observations. These findings can help inform future modeling efforts in the parameterization of stellar feedback in cosmological simulations of galaxy formation and evolution.
We investigate the relation between stellar mass and specific stellar angular momentum, or `Fall relation, for a sample of 17 isolated, regularly rotating disc galaxies at z=1. All galaxies have a) rotation curves determined from Halpha emission-line data; b) HST imaging in optical and infrared filters; c) robust determinations of their stellar masses. We use HST images in f814w and f160w filters, roughly corresponding to rest-frames B and I bands, to extract surface brightness profiles for our systems. We robustly bracket the specific angular momentum by assuming that rotation curves beyond the outermost Halpha rotation point stay either flat or follow a Keplerian fall-off. By comparing our measurements with those determined for disc galaxies in the local Universe, we find no evolution in the Fall relation in the redshift range 0<z<1, regardless of the band used and despite the uncertainties in the stellar rotation curves at large radii. This result holds unless stellar masses at z=1 are systematically underestimated by more than 50%. Our findings are compatible with expectations based on a LCDM cosmological framework and support a scenario where both the stellar Tully-Fisher and mass-size relations for spirals do not evolve significantly in this redshift range.
We use high-resolution HI data from the WHISP survey to study the HI and angular momentum properties of a sample of 114 late-type galaxies. We explore the specific baryonic angular momentum -- baryonic mass ($j_b - M_b$) relation, and find that an unbroken power law of the form $j_b propto M_b^{0.55 pm 0.02}$ fits the data well, with an intrinsic scatter of $sim 0.13 pm 0.01$ dex. We revisit the relation between the atomic gas fraction, $f_{atm}$, and the integrated atomic stability parameter $q$ (the $f_{atm} - q$ relation), originally introduced by Obreschkow et al., and probe this parameter space by populating it with galaxies from different environments, in order to study the influence of the environment on their $j_b$, $f_{atm}$ and $q$ values. We find evidence that galaxies with close neighbours show a larger intrinsic scatter about the $f_{atm} - q$ relation compared to galaxies without close-neighbours. We also find enhanced SFR among the deviating galaxies with close neighbours. In addition, we use the bulge-to-total (B/T) ratio as a morphology proxy, and find a general trend of decreasing B/T values with increasing disc stability and HI fraction in the $f_{atm} - q$ plane, indicating a fundamental link between mass, specific angular momentum, gas fraction and morphology of galaxies.
We study the dark and luminous mass distributions, circular velocity curves (CVC), line-of-sight kinematics, and angular momenta for a sample of 42 cosmological zoom simulations of massive galaxies. Using a temporal smoothing technique, we are able to reach large radii. We find that: (i)The dark matter halo density profiles outside a few kpc follow simple power-law models, with flat dark matter CVCs for lower-mass systems, and rising CVCs for high-mass haloes. The projected stellar density distributions at large radii can be fitted by Sersic functions with n>10, larger than for typical ETGs. (ii)The massive systems have nearly flat total CVCs at large radii, while the less massive systems have mildly decreasing CVCs. The slope of the CVC at large radii correlates with v_circ itself. (iii)The dark matter fractions within Re are in the range 15-30% and increase to 40-65% at 5Re. Larger and more massive galaxies have higher dark matter fractions. (iv)The short axes of simulated galaxies and their host dark matter haloes are well aligned and their short-to-long axis ratios are correlated. (v)The stellar vrms(R) profiles are slowly declining, in agreement with planetary nebulae observations in the outer haloes of most ETGs. (vi)The line-of-sight velocity fields v show that rotation properties at small and large radii are correlated. Most radial profiles for the cumulative specific angular momentum parameter lambda(R) are nearly flat or slightly rising, with values in [0.06,0.75] from 2Re to 5Re. (vii)Stellar mass, ellipticity at 5Re, and lambda(5Re) are correlated: the more massive systems have less angular momentum and are rounder, as for observed ETGs. (viii)More massive galaxies with a large fraction of accreted stars have radially anisotropic velocity distributions outside Re. Tangential anisotropy is seen only for galaxies with high fraction of in-situ stars. (Full abstract in PDF)
Traditional cosmological hydrodynamics simulations fail to spatially resolve the circumgalatic medium (CGM), the reservoir of tenuous gas surrounding a galaxy and extending to its virial radius. We introduce the technique of Enhanced Halo Resolution (EHR), enabling more realistic physical modeling of the simulated CGM by consistently forcing gas refinement to smaller scales throughout the virial halo of a simulated galaxy. We investigate the effects of EHR in the Tempest simulations, a suite of Enzo-based cosmological zoom simulations following the evolution of an L* galaxy, resolving spatial scales of 500 comoving pc out to 100 comoving kpc in galactocentric radius. Among its many effects, EHR (1) changes the thermal balance of the CGM, increasing its cool gas content and decreasing its warm/hot gas content; (2) preserves cool gas structures for longer periods; and (3) enables these cool clouds to exist at progressively smaller size scales. Observationally, this results in a boost in low ions like H I and a drop in high ions like O VI throughout the CGM. These effects of EHR do not converge in the Tempest simulations, but extrapolating these trends suggests that the CGM in reality is a mist consisting of ubiquitous, small, long-lived, cool clouds suspended in a hot medium at the virial temperature of the halo. Additionally, we explore the physical mechanisms to explain why EHR produces the above effects, proposing that it works both by (1) better sampling the distribution of CGM phases enabling runaway cooling in the denser, cooler tail of the phase distribution; and (2) preventing cool gas clouds from artificially mixing with the ambient hot halo and evaporating. Evidence is found for both EHR mechanisms occurring in the Tempest simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا