Generalized Expectation Consistent Signal Recovery for Nonlinear Measurements


Abstract in English

In this paper, we propose a generalized expectation consistent signal recovery algorithm to estimate the signal $mathbf{x}$ from the nonlinear measurements of a linear transform output $mathbf{z}=mathbf{A}mathbf{x}$. This estimation problem has been encountered in many applications, such as communications with front-end impairments, compressed sensing, and phase retrieval. The proposed algorithm extends the prior art called generalized turbo signal recovery from a partial discrete Fourier transform matrix $mathbf{A}$ to a class of general matrices. Numerical results show the excellent agreement of the proposed algorithm with the theoretical Bayesian-optimal estimator derived using the replica method.

Download