No Arabic abstract
Reliable extraction of cosmological information from clustering measurements of galaxy surveys requires estimation of the error covariance matrices of observables. The accuracy of covariance matrices is limited by our ability to generate sufficiently large number of independent mock catalogs that can describe the physics of galaxy clustering across a wide range of scales. Furthermore, galaxy mock catalogs are required to study systematics in galaxy surveys and to test analysis tools. In this investigation, we present a fast and accurate approach for generation of mock catalogs for the upcoming galaxy surveys. Our method relies on low-resolution approximate gravity solvers to simulate the large scale dark matter field, which we then populate with halos according to a flexible nonlinear and stochastic bias model. In particular, we extend the textsc{patchy} code with an efficient particle mesh algorithm to simulate the dark matter field (the textsc{FastPM} code), and with a robust MCMC method relying on the textsc{emcee} code for constraining the parameters of the bias model. Using the halos in the BigMultiDark high-resolution $N$-body simulation as a reference catalog, we demonstrate that our technique can model the bivariate probability distribution function (counts-in-cells), power spectrum, and bispectrum of halos in the reference catalog. Specifically, we show that the new ingredients permit us to reach percentage accuracy in the power spectrum up to $ksim 0.4; ,h,{rm Mpc}^{-1}$ (within 5% up to $ksim 0.6; ,h,{rm Mpc}^{-1}$) with accurate bispectra improving previous results based on Lagrangian perturbation theory.
One of the main predictions of excursion set theory is that the clustering of dark matter haloes only depends on halo mass. However, it has been long established that the clustering of haloes also depends on other properties, including formation time, concentration, and spin; this effect is commonly known as halo assembly bias. We use a suite of gravity-only simulations to study the dependence of halo assembly bias on cosmology; these simulations cover cosmological parameters spanning 10$sigma$ around state-of-the-art best-fitting values, including standard extensions of the $Lambda$CDM paradigm such as neutrino mass and dynamical dark energy. We find that the strength of halo assembly bias presents variations smaller than 0.05 dex across all cosmologies studied for concentration and spin selected haloes, letting us conclude that the dependence of halo assembly bias upon cosmology is negligible. We then study the dependence of galaxy assembly bias (i.e. the manifestation of halo assembly bias in galaxy clustering) on cosmology using subhalo abundance matching. We find that galaxy assembly bias also presents very small dependence upon cosmology ($sim$ 2$%$-4$%$ of the total clustering); on the other hand, we find that the dependence of this signal on the galaxy formation parameters of our galaxy model is much stronger. Taken together, these results let us conclude that the dependence of halo and galaxy assembly bias on cosmology is practically negligible.
Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.
We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function $Gamma_{text{gm}}(r_{text{p}})$, where $r_{text{p}}$ is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of $Gamma_{text{gm}}(r_{text{p}})$, and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.
Understanding the impact of halo properties beyond halo mass on the clustering of galaxies (namely galaxy assembly bias) remains a challenge for contemporary models of galaxy clustering. We explore the use of machine learning to predict the halo occupations and recover galaxy clustering and assembly bias in a semi-analytic galaxy formation model. For stellar-mass selected samples, we train a Random Forest algorithm on the number of central and satellite galaxies in each dark matter halo. With the predicted occupations, we create mock galaxy catalogues and measure the clustering and assembly bias. Using a range of halo and environment properties, we find that the machine learning predictions of the occupancy variations with secondary properties, galaxy clustering and assembly bias are all in excellent agreement with those of our target galaxy formation model. Internal halo properties are most important for the central galaxies prediction, while environment plays a critical role for the satellites. Our machine learning models are all provided in a usable format. We demonstrate that machine learning is a powerful tool for modelling the galaxy-halo connection, and can be used to create realistic mock galaxy catalogues which accurately recover the expected occupancy variations, galaxy clustering and galaxy assembly bias, imperative for cosmological analyses of upcoming surveys.
We present evidence for halo assembly bias as a function of geometric environment. By classifying GAMA galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with geometric environment is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of geometric environment. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star-formation rate and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous star-formation rate is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star-formation and chemical enrichment histories, that approximately mimic GAMAs typical signal-to-noise and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.