Do you want to publish a course? Click here

Insider-Attacks on Physical-Layer Group Secret-Key Generation in Wireless Networks

127   0   0.0 ( 0 )
 Added by Jagadeesh Harshan
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Physical-layer group secret-key (GSK) generation is an effective way of generating secret keys in wireless networks, wherein the nodes exploit inherent randomness in the wireless channels to generate group keys, which are subsequently applied to secure messages while broadcasting, relaying, and other network-level communications. While existing GSK protocols focus on securing the common source of randomness from external eavesdroppers, they assume that the legitimate nodes of the group are trusted. In this paper, we address insider attacks from the legitimate participants of the wireless network during the key generation process. Instead of addressing conspicuous attacks such as switching-off communication, injecting noise, or denying consensus on group keys, we introduce stealth attacks that can go undetected against state-of-the-art GSK schemes. We propose two forms of attacks, namely: (i) different-key attacks, wherein an insider attempts to generate different keys at different nodes, especially across nodes that are out of range so that they fail to recover group messages despite possessing the group key, and (ii) low-rate key attacks, wherein an insider alters the common source of randomness so as to reduce the key-rate. We also discuss various detection techniques, which are based on detecting anomalies and inconsistencies on the channel measurements at the legitimate nodes. Through simulations we show that GSK generation schemes are vulnerable to insider-threats, especially on topologies that cannot support additional secure links between neighbouring nodes to verify the attacks.



rate research

Read More

91 - J. Harshan , Rohit Joshi , 2018
It is well known that physical-layer Group Secret-Key (GSK) generation techniques allow multiple nodes of a wireless network to synthesize a common secret-key, which can be subsequently used to keep their group messages confidential. As one of its salient features, the wireless nodes involved in physical-layer GSK generation extract randomness from a subset of their wireless channels, referred as the common source of randomness (CSR). Unlike two-user key generation, in GSK generation, some nodes must act as facilitators by broadcasting quantiz
In this work, we consider a complete covert communication system, which includes the source-model of a stealthy secret key generation (SSKG) as the first phase. The generated key will be used for the covert communication in the second phase of the current round and also in the first phase of the next round. We investigate the stealthy SK rate performance of the first phase. The derived results show that the SK capacity lower and upper bounds of the source-model SKG are not affected by the additional stealth constraint. This result implies that we can attain the SSKG capacity for free when the sequences observed by the three terminals Alice ($X^n$), Bob ($Y^n$) and Willie ($Z^n$) follow a Markov chain relationship, i.e., $X^n-Y^n-Z^n$. We then prove that the sufficient condition to attain both, the SK capacity as well as the SSK capacity, can be relaxed from physical to stochastic degradedness. In order to underline the practical relevance, we also derive a sufficient condition to attain the degradedness by the usual stochastic order for Maurers fast fading Gaussian (satellite) model for the source of common randomness.
81 - Rohit Joshi , J. Harshan 2021
It is well known that physical-layer key generation methods enable wireless devices to harvest symmetric keys by accessing the randomness offered by the wireless channels. Although two-user key generation is well understood, group secret-key (GSK) generation, wherein more than two nodes in a network generate secret-keys, still poses open problems. Recently, Manish Rao et al., have proposed the Algebraic Symmetrically Quantized GSK (A-SQGSK) protocol for a network of three nodes wherein the nodes share quantiz
77 - Lei Hu , Guyue Li , Hongyi Luo 2021
Reconfigurable Intelligent Surface (RIS) is a new paradigm that enables the reconfiguration of the wireless environment. Based on this feature, RIS can be employed to facilitate Physical-layer Key Generation (PKG). However, this technique could also be exploited by the attacker to destroy the key generation process via manipulating the channel features at the legitimate user side. Specifically, this paper proposes a new RIS-assisted Manipulating attack (RISM) that reduces the wireless channel reciprocity by rapidly changing the RIS reflection coefficient in the uplink and downlink channel probing step in orthogonal frequency division multiplexing (OFDM) systems. The vulnerability of traditional key generation technology based on channel frequency response (CFR) under this attack is analyzed. Then, we propose a slewing rate detection method based on path separation. The attacked path is removed from the time domain and a flexible quantization method is employed to maximize the Key Generation Rate (KGR). The simulation results show that under RISM attack, when the ratio of the attack path variance to the total path variance is 0.17, the Bit Disagreement Rate (BDR) of the CFR-based method is greater than 0.25, and the KGR is close to zero. In addition, the proposed detection method can successfully detect the attacked path for SNR above 0 dB in the case of 16 rounds of probing and the KGR is 35 bits/channel use at 23.04MHz bandwidth.
77 - You Chen , Guyue Li , Chen Sun 2020
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme with pilot reuse based on the beam domain channel model and derive close-form expression of secret key rate. Specifically, we present two algorithms, i.e., beam-domain based channel probing (BCP) algorithm and interference neutralization based multi-user beam allocation (IMBA) algorithm for the purpose of channel dimension reduction and multi-user pilot reuse, respectively. Numerical results verify that the proposed PKG scheme can achieve the secret key rate that approximates the perfect case, and significantly reduce the dimension of the channel estimation and pilot overhead.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا