Conductivity and Dissociation in Metallic Hydrogen: Implications for Planetary Interiors


Abstract in English

Liquid metallic hydrogen (LMH) was recently produced under static compression and high temperatures in bench-top experiments. Here, we report a study of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar and use the Drude free-electron model to determine its optical conductivity. We find static electrical conductivity of metallic hydrogen to be 11,000-15,000 S/cm. A substantial dissociation fraction is required to best fit the energy dependence of the observed reflectance. LMH at our experimental conditions is largely atomic and degenerate, not primarily molecular. We determine a plasma frequency and the optical conductivity. Properties are used to analyze planetary structure of hydrogen rich planets such as Jupiter.

Download