Fully quantum description of the Zundel ion: combining variational quantum Monte Carlo with path integral Langevin dynamics


Abstract in English

We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo (QMC) solution of the electronic part with the path integral (PI) formalism for the quantum nuclear dynamics. On the one hand, the PI molecular dynamics includes nuclear quantum effects by adding a set of fictitious classical particles (beads) aimed at reproducing nuclear quantum fluctuations via a harmonic kinetic term. On the other hand, variational QMC can provide Born-Oppenheimer (BO) potential energy surfaces with a precision comparable to the most advanced post Hartree-Fock approaches, and with a favorable scaling with the system size. To deal with the intrinsic QMC noise, we generalize the PI molecular dynamics using a Langevin thermostat correlated according to the covariance matrix of QMC nuclear forces. The variational parameters of the QMC wave function are evolved during the nuclear dynamics, such that the BO potential energy surface is unbiased. Statistical errors on the wave function parameters are reduced by resorting to bead grouping average, which we show to be accurate and well controlled. Our general algorithm relies on a Trotter breakup between the dynamics driven by ionic forces and the one set by the harmonic interbead couplings. The latter is exactly integrated even in presence of the Langevin thermostat, thanks to the mapping onto an Ornstein-Uhlenbeck process. This framework turns out to be very efficient also in the case of deterministic ionic forces. The new implementation is validated on the Zundel ion by direct comparison with standard PI Langevin dynamics calculations made with a coupled cluster potential energy surface. Nuclear quantum effects are confirmed to be dominant over thermal effects well beyond room temperature giving the excess proton an increased mobility by quantum tunneling.

Download