No Arabic abstract
A highly integrated, high performance, and re-configurable device, which is designed for the Nitrogen-Vacancy center based quantum applications, is reported. The digital compartment of the device is fully implemented in a Field-Programmable-Gate- Array. The digital compartment is designed to manage the multi-function digital waveform generation and the Time-to-Digital-Convertors. The device provides two Arbitrary-Waveform-Generator channels which operate at a 1 Gsps sampling rate with a maximum bandwidth of 500 MHz. There are twelve pulse channels integrated in the device with a 50 ps time resolution in both duration and delay. The pulse channels operate with the 3.3 V Transistor-Transistor logic. The FPGA-based Timeto- Digital-Convertor provides a 23-ps time measurement precision. A data accumulation module, which can record the input count rate and the distributions of the time measurement, is also available. A Digital-to-Analog-Convertor board is implemented as the analog compartment, which converts the digital waveforms to analog signals with 500 MHz low-pass-filters. All the input and output channels of the device are equipped with 50 Sub-Miniature version A termination. The hardware design is modularized thus it can be easily upgraded with compatible components. The device is suitable to be applied in the quantum technologies based on the N-V centers, as well as in other quantum solid state systems, such as quantum dots, phosphorus doped in silicon and defect spins in silicon carbide.
The Time Projection Chamber (TPC) is an ideal candidate to finely study the charged particle ionization in a gaseous medium. Large volumes TPCs can be read out with a suitable number of channels offering a complete 3D reconstruction of an ultra-relativistic charged particle track, that is the sequence of its energy releases in the TPC gas volume. Moreover, He-based TPCs are very promising to study keV energy particles as nuclear recoils, opening the possibility for directional searches of Dark Matter (DM) and the study of Solar Neutrinos (SN). In this paper, we report the analysis of the data acquired with a small TPC prototype (named LEMOn) built by the CYGNO collaboration that was exposed to a beam of 450 MeV electrons at the Beam Test Facility of National Laboratories of Frascati. LEMOn is operated with a He-CF4 mixture at atmospheric pressure and is based on a Gas Electron Multipliers amplification stage that produces visible light collected by a sub-millimeter position resolution scientific CMOS camera. This type of readout - in conjunction with a fast light detection - allows a 3D reconstruction of the electrons tracks. The electrons are leaving a trail of segments of ionizations corresponding to a few keV energy releases each. Their study leads to predict a keV energy threshold and 1-10 mm longitudinal and 0.1-0.3 mm transverse position resolution for nuclear recoils, very promising for the application of optically readout TPC to DM searches and SN measurements.
We present some aspects of photon counting to study scintillators at low temperatures. A time-to-digital converter (TDC) had been configured to acquire several-minute-long streams of data, simplifying the multiple photon counting coincidence technique. Results in terms of light yield and time structure of a ZnWO4 scintillator are comparable to those obtained with a fast digitizer. Streaming data also provides flexibility in analyzing the data, in terms of coincidence window between the channels, and acquisition window of individual channels. We discuss the effect of changing these parameters, and use them to confirm low-energy features in the spectra of the number of detected photons, such as the 60 keV line from 241Am in the ZnWO4 sample. We lastly use the TDC to study the transmission of the optical cryostat employed in these studies at various temperatures.
Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of off-the-shelf TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable Gate Arrays (FPGAs) desirable. Most of the architectures developed so far are based on the tapped delay lines with precision down to 10 ps, obtained with high FPGA resources usage and non-linearity issues to be managed. Often such precision is not necessary; in this case TDC architectures with low resources occupancy are preferable allowing the implementation of data processing systems and of other utilities on the same device. In order to reconstruct gamma-gamma physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a 32 channel TDC with a precision of 255 ps and low non-linearity effects along with an embedded data acquisition systems and the interface to the online FARM of KLOE-2.
The National Ignition Facility (NIF) will contain the worlds most powerful laser. NIF requires more than 1500 precisely timed trigger pulses to control the timing of laser and diagnostic equipment. The Integrated Timing System applies new concepts to generate and deliver triggers at preprogrammed times to equipment throughout the laser and target areas of the facility. Trigger pulses during the last 2 seconds of a shot cycle are required to have a jitter of less than 20 ps (rms) and a wander of less than 100 ps (max). Also, the Timing System allows simultaneous, independent use by multiple clients by partitioning the system hardware into subsets that are controlled via independent software keys. The hardware necessary to implement the Integrated Timing System is commercially available. -- This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
In order to reconstruct gamma-gamma physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a Time to Digital Converter (TDC) with 625 ps resolution (LSB) along with an embedded data acquisition system and the interface to the online FARM of KLOE-2. We will describe briefly the architecture of the TDC and of the Data AcQuisition (DAQ) system. Some more details will be provided about the zero-suppression algorithm used to reduce the data throughput.