Do you want to publish a course? Click here

Characterisation and applications of $Bbbk$-split bimodules

165   0   0.0 ( 0 )
 Added by Volodymyr Mazorchuk
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We describe the structure of bimodules (over finite dimensional algebras) which have the property that the functor of tensoring with such a bimodule sends any module to a projective module. The main result is that all such bimodules are $Bbbk$-split in the sense that they factor (inside the tensor category of bimodules) over $Bbbk$-vector spaces. As one application, we show that any simple $2$-category has a faithful $2$-representation inside the $2$-category of $Bbbk$-split bimodules. As another application, we classify simple transitive $2$-representations of the $2$-category of projective bimodules over the algebra $Bbbk[x,y]/(x^2,y^2,xy)$.



rate research

Read More

The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum $mathfrak{sl}_2$ representation category. It also establishes a precise relation between the simple transitive $2$-representations of both monoidal categories, which are indexed by bicolored $mathsf{ADE}$ Dynkin diagrams. Using the quantum Satake correspondence between affine $mathsf{A}_{2}$ Soergel bimodules and the semisimple quotient of the quantum $mathfrak{sl}_3$ representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive $2$-representations corresponding to tricolored generalized $mathsf{ADE}$ Dynkin diagrams.
94 - Thomas J. Haines 2016
This article establishes some elementary dualities for root systems with automorphisms. We give several applications to reductive groups over nonarchimedean local fields: (1) the proof of a conjecture of Pappas-Rapoport-Smithling characterizing the extremal elements of the ${ mu }$-admissible sets attached to general non-split groups; (2) for quasi-split groups, a simple uniform description of the Bruhat-Tits {e}chelonnage root system $Sigma_0$, the Knop root system $widetilde{Sigma}_0$, and the Macdonald root system $Sigma_1$, in terms of Galois actions on the absolute roots $Phi$; and (3) for quasi-split groups, the construction of the geometric basis of the center of a parahoric Hecke algebra, and the expression of certain important elements of the stable Bernstein center in terms of this basis.
In this article we analyze the structure of $2$-categories of symmetric projective bimodules over a finite dimensional algebra with respect to the action of a finite abelian group. We determine under which condition the resulting $2$-category is fiat (in the sense of cite{MM1}) and classify simple transitive $2$-representations of this $2$-category (under some mild technical assumption). We also study several classes of examples in detail.
We discuss the structure of the Motzkin algebra $M_k(D)$ by introducing a sequence of idempotents and the basic construction. We show that $cup_{kgeq 1}M_k(D)$ admits a factor trace if and only if $Din {2cos(pi/n)+1|ngeq 3}cup [3,infty)$ and higher commutants of these factors depend on $D$. Then a family of irreducible bimodules over the factors are constructed. A tensor category with $A_n$ fusion rule is obtained from these bimodules.
117 - P. Saracco 2015
The Structure Theorem for Hopf modules states that if a bialgebra $H$ is a Hopf algebra (i.e. it is endowed with a so-called antipode) then every Hopf module $M$ is of the form ${M}^{mathrm{co}{H}}otimes H$, where ${M}^{mathrm{co}{H}}$ denotes the space of coinvariant elements in $M$. Actually, it has been shown that this result characterizes Hopf algebras: $H$ is a Hopf algebra if and only if every Hopf module $M$ can be decomposed in such a way. The main aim of this paper is to extend this characterization to the framework of quasi-bialgebras by introducing the notion of preantipode and by proving a Structure Theorem for quasi-Hopf bimodules. We will also establish the uniqueness of the preantipode and the closure of the family of quasi-bialgebras with preantipode under gauge transformation. Then, we will prove that every Hopf and quasi-Hopf algebra (i.e. a quasi-bialgebra with quasi-antipode) admits a preantipode and we will show how some previous results, as the Structure Theorem for Hopf modules, the Hausser-Nill theorem and the Bulacu-Caenepeel theorem for quasi-Hopf algebras, can be deduced from our Structure Theorem. Furthermore, we will investigate the relationship between the preantipode and the quasi-antipode and we will study a number of cases in which the two notions are equivalent: ordinary bialgebras endowed with trivial reassociator, commutative quasi-bialgebras, finite-dimensional quasi-bialgebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا