Do you want to publish a course? Click here

Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays

177   0   0.0 ( 0 )
 Added by Tim Huege
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio waves, perhaps because they are uniquely transparent in our terrestrial atmosphere, as well as the cosmos beyond, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructable, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.



rate research

Read More

The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Only the most energetic of these have sufficiently small angular deflections to be used for directional studies, and their flux is so low that even the 3,000 km^2 Pierre Auger detector registers only about 30 cosmic rays per year of these energies. A method to provide an even larger aperture is to use the lunar Askaryan technique, in which ground-based radio telescopes search for the nanosecond radio flashes produced when a cosmic ray interacts with the Moons surface. The technique is also sensitive to UHE neutrinos, which may be produced in the decays of topological defects from the early universe. Observations with existing radio telescopes have shown that this technique is technically feasible, and established the required procedure: the radio signal should be searched for pulses in real time, compensating for ionospheric dispersion and filtering out local radio interference, and candidate events stored for later analysis. For the Square Kilometre Array (SKA), this requires the formation of multiple tied-array beams, with high time resolution, covering the Moon, with either SKA1-LOW or SKA1-MID. With its large collecting area and broad bandwidth, the SKA will be able to detect the known flux of UHE cosmic rays using the visible lunar surface - millions of square km - as the detector, providing sufficient detections of these extremely rare particles to address the mystery of their origin.
136 - H. Falcke ASTRON 2004
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off. (abridged)
The IceCube Neutrino Observatory has recently found compelling evidence for a particular blazar producing high-energy neutrinos and $mathrm{PeV}$ cosmic rays, however the sources of cosmic rays above several $mathrm{EeV}$ remain unidentified. It is believed that the same environments that accelerate ultra-high-energy cosmic rays (UHECRs) also produce high-energy neutrinos via hadronic interactions of lower-energy cosmic rays. Two out of three joint analyses of the IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array yielded hints for a possible directional correlation of high-energy neutrinos and UHECRs. These hints however became less significant with more data. Recently, an improved analysis with an approach complementary to the other analyses has been developed. This analysis searches for neutrino point sources in the vicinity of UHECRs with search windows estimated from deflections by galactic magnetic fields. We present this new analysis method for searching common hadronic sources, additionally including neutrino data measured by ANTARES in order to increase the sensitivity to possible correlations in the Southern Hemisphere.
The sources of ultra-high energy cosmic rays (UHECRs) are still one of the main open questions in high-energy astrophysics. If UHECRs are accelerated in astrophysical sources, they are expected to produce high-energy photons and neutrinos due to the interaction with the surrounding astrophysical medium or ambient radiation. In particular, neutrinos are powerful probes for the investigation of the region of production and acceleration of UHECRs since they are not sensitive to magnetic deflections nor to interactions with the interstellar medium. The results of three different analyses that correlate the very high-energy neutrino candidates detected by IceCube and ANTARES and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array will be discussed. The first two analyses use a sample of high-energy neutrinos from IceCube and ANTARES selected to have a significant probability to be of astrophysical origin. The first analysis cross-correlates the arrival directions of these selected neutrino events and UHECRs. The second one is a stacked likelihood analysis assuming as stacked sources the high-energy neutrino directions and looking for excesses in the UHECR data set around the directions of the neutrino candidates. The third analysis instead uses a larger sample of neutrinos selected to look for neutrino point-like sources. It consists of a likelihood method that looks for excesses in the neutrino point-source data set around the directions of the highest-energy UHECRs.
182 - Todor Stanev 2008
We discuss the main results that were recently published by the Auger Collaboration and their impact on our knowledge of the ultra high energy cosmic rays and neutrinos.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا