No Arabic abstract
In monolayer semiconductor transition metal dichalcogenides, the exciton-phonon interaction is expected to strongly affect the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M). Oscillatory behavior is also observed in the steady-state emission linewidth and in timeresolved photoluminescence excitation data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role played by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.
We study experimentally and theoretically the exciton-phonon interaction in MoSe2 monolayers encapsulated in hexagonal BN, which has an important impact on both optical absorption and emission processes. The exciton transition linewidth down to 1 meV at low temperatures makes it possible to observe high energy tails in absorption and emission extending over several meV, not masked by inhomogeneous broadening. We develop an analytical theory of the exciton-phonon interaction accounting for the deformation potential induced by the longitudinal acoustic phonons, which plays an important role in exciton formation. The theory allows fitting absorption and emission spectra and permits estimating the deformation potential in MoSe2 monolayers. We underline the reasons why exciton-phonon coupling is much stronger in two-dimensional transition metal dichalcodenides as compared to conventional quantum well structures. The importance of exciton-phonon interactions is further highlighted by the observation of a multitude of Raman features in the photoluminescence excitation experiments.
Modern electronic devices heavily rely on the accurate control of charge and spin of electrons. The emergence of controllable valley degree of freedom brings new possibilities and presents a promising prospect towards valleytronics. Recently, valley excitation selected by chiral optical pumping has been observed in monolayer MoS2. In this work, we report polarized photoluminescence (PL) measurements for monolayer MoSe2, another member of the family of transition-metal-dichalcogenides (MX2), and observe drastic difference from the outcomes of MoS2. In particular, we identify a valley polarization (VP) up to 70% for B exciton, while that for A exciton is less than 3%. Besides, we also find a small but finite negative VP for A- trion. These results reveal several new intra- and inter-valley scattering processes which significantly affect valley polarization, hence provide new insights into exciton physics in monolayer MX2 and possible valleytronic applications.
Atomically thin layer transition metal dichalcogenides have been intensively investigated for their rich optical properties and potential applications in nano-electronics. In this work, we study the incoherent optical phonon and exciton population dynamics in monolayer WS2 by time-resolved spontaneous Raman scattering spectroscopy. Upon excitation of the exciton transition, both the Stokes and anti-Stokes optical phonon scattering strength exhibit a large reduction. Based on the detailed balance, the optical phonon population is retrieved, which shows an instant build-up and a relaxation lifetime of around 4 ps at an exciton density E12 cm-2. The corresponding optical phonon temperature rises by 25 K, eventually, after some 10s of picoseconds, leading to a lattice heating by only around 3 K. The exciton relaxation dynamics extracted from the transient vibrational Raman response shows a strong excitation density dependence, signaling an important bi-molecular contribution to the decay. The exciton relaxation rate is found to be (70 ps)-1 and exciton-exciton annihilation rate 0.1 cm2s-1. These results provide valuable insight into the thermal dynamics after optical excitation and enhance the understanding of the fundamental exciton dynamics in two-dimensional transition metal materials.
We combine linear and non-linear optical spectroscopy at 4K with ab initio calculations to study the electronic bandstructure of MoSe2 monolayers. In 1-photon photoluminescence excitation (PLE) and reflectivity we measure a separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we detect for the A- and B-exciton the 2p state 180meV above the respective 1s state. In second harmonic generation (SHG) spectroscopy we record an enhancement by more than 2 orders of magnitude of the SHG signal at resonances of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our post-Density Functional Theory calculations show in the conduction band along the $K-Gamma$ direction a local minimum that is energetically and in k-space close to the global minimum at the K-point. This has a potentially strong impact on the polarization and energy of the excitonic states that govern the interband transitions and marks an important difference to MoS2 and WSe2 monolayers.
The dynamics of exciton formation in transition metal dichalcogenides is difficult to measure experimentally, since many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tuneable pump, high-harmonic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS$_2$. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast timescale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic timescale and observe the formation of a momentum-forbidden dark K$Sigma$ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS$_2$.