Do you want to publish a course? Click here

BAT AGN Spectroscopic Survey - IV: Near-Infrared Coronal Lines, Hidden Broad Lines, and Correlation with Hard X-ray Emission

54   0   0.0 ( 0 )
 Added by Isabella Lamperti
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a comprehensive census of the near-Infrared (NIR, 0.8-2.4 $mu$m) spectroscopic properties of 102 nearby (z < 0.075) active galactic nuclei (AGN), selected in the hard X-ray band (14-195 keV) from the Swift-Burst Alert Telescope (BAT) survey. With the launch of the James Webb Space Telescope this regime is of increasing importance for dusty and obscured AGN surveys. We measure black hole masses in 68% (69/102) of the sample using broad emission lines (34/102) and/or the velocity dispersion of the Ca II triplet or the CO band-heads (46/102). We find that emission line diagnostics in the NIR are ineffective at identifying bright, nearby AGN galaxies because ([Fe II] 1.257$mu$m/Pa$beta$ and H$_2$ 2.12$mu$m/Br$gamma$) identify only 25% (25/102) as AGN with significant overlap with star forming galaxies and only 20% of Seyfert 2 have detected coronal lines (6/30). We measure the coronal line emission in Seyfert 2 to be weaker than in Seyfert 1 of the same bolometric luminosity suggesting obscuration by the nuclear torus. We find that the correlation between the hard X-ray and the [Si VI] coronal line luminosity is significantly better than with the [O III] luminosity. Finally, we find 3/29 galaxies (10%) that are optically classified as Seyfert 2 show broad emission lines in the NIR. These AGN have the lowest levels of obscuration among the Seyfert 2s in our sample ($log N_{rm H} < 22.43$ cm$^{-2}$), and all show signs of galaxy-scale interactions or mergers suggesting that the optical broad emission lines are obscured by host galaxy dust.



rate research

Read More

We present the host galaxy molecular gas properties of a sample of 213 nearby (0.01<z< 0.05) hard X-ray selected AGN galaxies, drawn from the 70-month catalog of Swift-BAT, with 200 new CO(2-1) line measurements obtained with the JCMT and APEX telescopes. We find that AGN in massive galaxies tend to have more molecular gas, and higher gas fractions, than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies with no evidence of AGN feedback affecting the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% vs. 49%). The likelihood of a given galaxy hosting an AGN (L_bol>10^44 erg/s) increases by ~10-100 between a molecular gas mass of 10^8.7 Msun and 10^10.2 Msun. Higher Eddington ratio AGN galaxies tend to have higher molecular gas masses and gas fractions. Higher column density AGN galaxies (Log NH>23.4) are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy wide molecular gas. The significant average link of host galaxy molecular gas supply to SMBH growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties and the redshift evolution of star formation and SMBH growth.
We have conducted 22 GHz radio imaging at 1 resolution of 100 low-redshift AGN selected at 14-195 keV by the Swift-BAT. We find a radio core detection fraction of 96%, much higher than lower-frequency radio surveys. Of the 96 radio-detected AGN, 55 have compact morphologies, 30 have morphologies consistent with nuclear star formation, and 11 have sub-kpc to kpc-scale jets. We find that the total radio power does not distinguish between nuclear star formation and jets as the origin of the radio emission. For 87 objects, we use optical spectroscopy to test whether AGN physical parameters are distinct between radio morphological types. We find that X-ray luminosities tend to be higher if the 22 GHz morphology is jet-like, but find no significant difference in other physical parameters. We find that the relationship between the X-ray and core radio luminosities is consistent with the $L_R/L_X sim 10^{-5}$ of coronally active stars. We further find that the canonical fundamental planes of black hole activity systematically over-predict our radio luminosities, particularly for objects with star formation morphologies.
81 - Junhyun Baek 2019
We have performed a very long baseline interferometry (VLBI) survey of local (z < 0.05) ultra hard X-ray (14-195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) using KVN, KaVA, and VLBA. We first executed fringe surveys of 142 BAT-detected AGN at 15 or 22 GHz. Based on the fringe surveys and archival data, we find 10/279 nearby AGN (~4%) VLBI have 22 GHz flux above 30 mJy. This implies that the X-ray AGN with a bright nuclear jet are not common. Among these 10 radio-bright AGN, we obtained 22 GHz VLBI imaging data of our own for four targets and reprocessed archival data for six targets. We find that, although our 10 AGN observed with VLBI span a wide range of pc-scale morphological types, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our result suggests that a powerful nuclear radio jet correlates with the accretion disc luminosity. We also probed the fundamental plane of black hole activity at VLBI scales (e.g., few milli-arcsecond). The jet luminosity and size distribution among our sample roughly fit into the proposed AGN evolutionary scenario, finding powerful jets after the blow-out phase based on the Eddington ratio (lambda_{Edd})-hydrogen column density (N_{H}) relation. In addition, we find some hints of gas inflow or galaxy-galaxy merger in the majority of our sample. This implies that gas supply via tidal interactions in galactic scale may help the central AGN to launch a powerful parsec-scale jet.
Dust-obscured galaxies (DOGs) with extreme infrared luminosities may represent a key phase in the co-evolution of galaxies and supermassive black holes. We select 12 DOGs at $0.3lesssim zlesssim1.0$ with broad Mg II or H$beta$ emission lines and investigate their X-ray properties utilizing snapshot observations ($sim3~mathrm{ks}$ per source) with Chandra. By assuming that the broad lines are broadened due to virial motions of broad-line regions, we find that our sources generally have high Eddington ratios ($lambda_mathrm{Edd}$). Our sources generally have moderate intrinsic X-ray luminosities ($L_mathrm{X}lesssim10^{45}~mathrm{erg~s^{-1}}$), which are similar to those of other DOGs, but are more obscured. They also present moderate outflows and intense starbursts. Based on these findings, we conclude that high-$lambda_mathrm{Edd}$ DOGs are closer to the peaks of both host-galaxy and black-hole growth compared to other DOGs, and that AGN feedback has not swept away their reservoirs of gas. However, we cannot fully rule out the possibility that the broad lines are broadened by outflows, at least for some sources. We investigate the relations among $L_mathrm{X}$, AGN rest-frame $6~mathrm{mu m}$ monochromatic luminosity, and AGN bolometric luminosity, and find the relations are consistent with the expected ones.
Hard X-ray ($geq 10$ keV) observations of Active Galactic Nuclei (AGN) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, has currently detected 838 AGN. We report here on the broad-band X-ray (0.3-150 keV) characteristics of these AGN, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band ($leq 10$ keV) with 70-month averaged Swift/BAT data. The non-blazar AGN of our sample are almost equally divided into unobscured ($N_{rm H}< 10^{22}rm cm^{-2}$) and obscured ($N_{rm H}geq 10^{22}rm cm^{-2}$) AGN, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا