Do you want to publish a course? Click here

OmegaWINGS: spectroscopy in the outskirts of local clusters of galaxies

82   0   0.0 ( 0 )
 Added by Alessia Moretti
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studies of the properties of low-redshift cluster galaxies suffer, in general, from small spatial coverage of the cluster area. WINGS, the most homogeneous and complete study of galaxies in dense environments to date, obtained spectroscopic redshifts for 48 clusters at a median redshift of 0.05, out to an average distance of approximately 0.5 cluster virial radii. The WINGS photometric survey was recently extended by the VST survey OmegaWINGS to cover the outskirts of a subset of the original cluster sample. In this work, we present the spectroscopic follow-up of 33 of the 46 clusters of galaxies observed with VST over 1 square degree. The aim of this spectroscopic survey is to enlarge the number of cluster members and study the galaxy characteristics and the cluster dynamical properties out to large radii, reaching the virial radius and beyond. We used the AAOmega spectrograph at AAT to obtain fiber-integrated spectra covering the wavelength region between 3800 and 9000 A, with a spectral resolution of 3.5-6 A full width at half maximum (FWHM). Observations were performed using two different configurations and exposure times per cluster. We measured redshifts using both absorption and emission lines and used them to derive the cluster redshifts and velocity dispersions. We present here the redshift measurements for 17985 galaxies, 7497 of which turned out to be cluster members. The sample magnitude completeness is 80% at V=20. Thanks to the observing strategy, the radial completeness turned out to be relatively constant (90%) within the AAOmega field of view. The success rate in measuring redshifts is 95%, at all radii. We provide redshifts for the full sample of galaxies in OmegaWINGS clusters together with updated and robust cluster redshift and velocity dispersions. These data will be publicly accessible through the CDS and VO archives.



rate research

Read More

We study the effects of the environment on galaxy quenching in the outskirts of clusters at $0.04 < z < 0.08$. We use a subsample of 14 WINGS and OmegaWINGS clusters that are linked to other groups/clusters by filaments and study separately galaxies located in two regions in the outskirts of these clusters according to whether they are located towards the filaments directions or not. We also use samples of galaxies in clusters and field as comparison. Filamentary structures linking galaxy groups/clusters were identified over the Six Degree Field Galaxy Redshift Survey Data Release 3. We find a fraction of passive galaxies in the outskirts of clusters intermediate between that of the clusters and the fields. We find evidence of a more effective quenching in the direction of the filaments. We also analyse the abundance of post-starburst galaxies in the outskirts of clusters focusing our study on two extreme sets of galaxies according to their phase-space position: backsplash and true infallers. We find that up to $sim70%$ of post-starburst galaxies in the direction of filaments are likely backsplash, while this number drops to $sim40%$ in the isotropic infall region. The presence of this small fraction of galaxies in filaments that are falling into clusters for the first time and have been recently quenched, supports a scenario in which a significant number of filament galaxies have been quenched long time ago.
86 - A. Paccagnella 2017
Galaxies that abruptly interrupt their star formation in < 1.5 Gyr present recognizable features in their spectra (no emission and Hd in absorption) and are called post starburst (PSB) galaxies. By studying their stellar population properties and their location within the clusters, we obtain valuable insights on the physical processes responsible for star formation quenching. We present the first complete characterization of PSB galaxies in clusters at 0.04 < z < 0.07, based on WINGS and OmegaWINGS data, and contrast their properties to those of passive (PAS) and emission line (EML) galaxies. For V < 20, PSBs represent 7.2 +/- 0.2% of cluster galaxies within 1.2 virial radii. Their incidence slightly increases from the outskirts toward the cluster center and from the least toward the most luminous and massive clusters, defined in terms of X-ray luminosity and velocity dispersion. The phase-space analysis and velocity dispersion profile suggest that PSBs represent a combination of galaxies with different accretion histories. Moreover, PSBs with the strongest Hd are consistent with being recently accreted. PSBs have stellar masses, magnitudes, colors and morphologies intermediate between PAS and EML galaxies, typical of a population in transition from being star forming to passive. Comparing the fraction of PSBs to the fraction of galaxies in transition on longer timescales, we estimate that the short timescale star-formation quenching channel contributes two times more than the long timescale one to the growth of the passive population. Processes like ram-pressure stripping and galaxy-galaxy interactions are more efficient than strangulation in affecting star formation.
The relation between a cosmological halo concentration and its mass (cMr) is a powerful tool to constrain cosmological models of halo formation and evolution. On the scale of galaxy clusters the cMr has so far been determined mostly with X-ray and gravitational lensing data. The use of independent techniques is helpful in assessing possible systematics. Here we provide one of the few determinations of the cMr by the dynamical analysis of the projected-phase-space distribution of cluster members. Based on the WINGS and OmegaWINGS data sets, we used the Jeans analysis with the MAMPOSSt technique to determine masses and concentrations for 49 nearby clusters, each of which has ~60 spectroscopic members or more within the virial region, after removal of substructures. Our cMr is in statistical agreement with theoretical predictions based on LambdaCDM cosmological simulations. Our cMr is different from most previous observational determinations because of its flatter slope and lower normalization. It is however in agreement with two recent cMr obtained using the lensing technique on the CLASH and LoCuSS cluster data sets. In the future we will extend our analysis to galaxy systems of lower mass and at higher redshifts.
108 - A. Bosma 2016
The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current $rm Lambda$ cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.
The outskirts of galaxies offer extreme environments where we can test our understanding of the formation, evolution, and destruction of molecules and their relationship with star formation and galaxy evolution. We review the basic equations that are used in normal environments to estimate physical parameters like the molecular gas mass from CO line emission and dust continuum emission. Then we discuss how those estimates may be affected when applied to the outskirts, where the average gas density, metallicity, stellar radiation field, and temperature may be lower. We focus on observations of molecular gas in the outskirts of the Milky Way, extragalactic disk galaxies, early-type galaxies, groups, and clusters. The scientific results show the versatility of molecular gas, as it has been used to trace Milky Way spiral arms out to a galactocentric radius of 15 kpc, to study star formation in extended ultraviolet disk galaxies, to probe galaxy interactions in polar ring S0 galaxies, and to investigate ram pressure stripping in clusters. We highlight the physical stimuli that accelerate the formation of molecular gas, including internal processes such as spiral arm compression and external processes such as interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا