Do you want to publish a course? Click here

Ru-doping on iron based pnictides: the unfolded dominant role of structural effects for superconductivity

75   0   0.0 ( 0 )
 Added by Michele Reticcioli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an ab-initio study of Ru substitution in two different compounds, BaFe2As2 and LaFeAsO, pure and F-doped. Despite the many similarities among them, Ru substitution has very different effects on these compounds. By means of an unfolding technique, which allows us to trace back the electronic states into the primitive cell of the pure compounds, we are able to disentangle the effects brought by the local structural deformations and by the impurity potential to the states at the Fermi level. Our results are compared with available experiments and show: i) satisfying agreement of the calculated electronic properties with experiments, confirming the presence of a magnetic order on a short range scale; ii) Fermi surfaces strongly dependent on the internal structural parameters, more than on the impurity potential. These results enter a widely discussed field in the literature and provide a better understanding of the role of Ru in iron pnictides: although isovalent to Fe, the Ru-Fe substitution leads to changes in the band structure at the Fermi level mainly related to local structural modifications.



rate research

Read More

515 - K.P.Sinha 2009
The recent discovery of superconductivity at moderately high temperature (26 K to 55 K) in doped iron-based pnictides (LnO_{1-x}F_xFeAs, where Ln = La, Ce, Sm, Pr, Nd, etc.), having layered-structure-like cuprates, has triggered renewed challenge towards understanding the pairing mechanism. After reviewing the current findings on these systems, a theoretical model of a combined mechanism is suggested in which the phonon-mediated and distortion-field-mediated pairing processes give the right order of superconducting critical temperature T_c. The distortion-field modes arise from Jahn-Teller or pseudo Jahn-Teller effects due to degenerate or near-degenerate iron 3d_{xz} and 3d_{yz} orbitals.
In a comprehensive study, we investigate the electronic scattering effects in EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ by using Fourier-transform infrared spectroscopy. In spite of the fact that Eu$^{2+}$ local moments order around $T_text{Eu} approx 20$,K, the overall optical response is strikingly similar to the one of the well-known Ba-122 pnictides. The main difference lies within the suppression of the lower spin-density-wave gap feature. By analysing our spectra with a multi-component model, we find that the high-energy feature around 0.7,eV -- often associated with Hunds rule coupling -- is highly sensitive to the spin-density-wave ordering, this further confirms its direct relationship to the dynamics of itinerant carriers. The same model is also used to investigate the in-plane anisotropy of magnetically detwinned EuFe$_{2}$As$_{2}$ in the antiferromagnetically ordered state, yielding a higher Drude weight and lower scattering rate along the crystallographic $a$-axis. Finally, we analyse the development of the room temperature spectra with isovalent phosphor substitution and highlight changes in the scattering rate of hole-like carriers induced by a Lifshitz transition.
We study hydrogen doping effects in an iron-based superconductor LaFeAsO_(1-y) by using the first-principles calculation and explore the reason why the superconducting transition temperature is remarkably enhanced by the hydrogen doping. The present calculations reveal that a hydrogen cation stably locating close to an iron atom attracts a negatively-charged FeAs layer and results in structural distortion favorable for further high temperature transition. In fact, the lattice constant a averaged over the employed supercell shrinks and then the averaged As-Fe-As angle approaches 109.74 degrees with increasing the hydrogen doping amount. Moreover, the calculations clarify electron doping effects of the solute hydrogen and resultant Fermi-level shift. These insights are useful for design of high transition-temperature iron-based superconductors.
Chemical doping has recently become a very important strategy to induce superconductivity especially in complex compounds. Distinguished examples include Ba-doped La$_2$CuO$_4$ (the first high temperature superconductor), K-doped BaBiO$_3$, K-doped C$_{60}$ and Na$_{x}$CoO$_{2}cdot y$H$_{2}$O. The most recent example is F-doped LaFeAsO, which leads to a new class of high temperature superconductors. One notes that all the above dopants are non-magnetic, because magnetic atoms generally break superconducting Cooper pairs. In addition, the doping site was out of the (super)conducting structural unit (layer or framework). Here we report that superconductivity was realized by doping magnetic element cobalt into the (super)conducting-active Fe$_2$As$_2$ layers in LaFe$_{1-x}$Co$_{x}$AsO. At surprisingly small Co-doping level of $x$=0.025, the antiferromagnetic spin-density-wave transition in the parent compound is completely suppressed, and superconductivity with $T_csim $ 10 K emerges. With increasing Co content, $T_c$ shows a maximum of 13 K at $xsim 0.075$, and then drops to below 2 K at $x$=0.15. This result suggests essential differences between previous cuprate superconductor and the present iron-based arsenide one.
138 - J.-X. Yin , Y. Y. Zhao , Zheng Wu 2020
High-temperature iron-based superconductivity develops in a structure with unusual lattice-orbital geometry, based on a planar layer of Fe atoms with 3d orbitals and tetrahedrally coordinated by anions. Here we elucidate the electronic role of anions in the iron-based superconductors utilizing state-of-the-art scanning tunneling microscopy. By measuring the local electronic structure, we find that As anion in Ba0.4K0.6Fe2As2 has a striking impact on the electron pairing. The superconducting electronic feature can be switched off/on by removing/restoring As atoms on Fe layer at the atomic scale. Our analysis shows that this remarkable atomic switch effect is related to the geometrical cooperation between anion mediated hopping and unconventional pairing interaction. Our results uncover that the local Fe-anion coupling is fundamental for the pairing interaction of iron-based superconductivity, and promise the potential of bottom-up engineering of electron pairing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا