Large $N$ correlation functions in $mathcal{N}=2$ superconformal quivers


Abstract in English

Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular, we show that: 1) The partition function for arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be computed in perturbation series, which converges uniformly for $|lambda_I|<pi^2$, where $lambda_I$ are the t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions can be explicitly computed to arbitrary orders. There is no universal effective coupling by which one can express them in terms of correlators of the $mathcal{N}=4$ theory. 4) One can define twisted and untwisted sector operators. At the perturbative orbifold point, when all the couplings are the same, the correlators of untwisted sector operators coincide with those of $mathcal{N}=4$ Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of a certain number of planar loops, determined by the conformal dimension of the operator.

Download