No Arabic abstract
Recent work of M.D. Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature, including a model of polyamine metabolism in mammals and a model of the pentose phosphate pathway in Trypanosoma brucei. We also run the program on 458 models from the European Bioinformatics Institutes BioModels Database and report our results.
We study chemical reaction networks with discrete state spaces, such as the standard continuous time Markov chain model, and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli. This analysis produces a system of equalities and inequalities which, in contrast to previous results on extinction events, allows algorithmic implementation. Such an implementation will be investigated in a companion paper where the results are applied to 458 models from the European Bioinformatics Institutes BioModels database.
Piecewise-Linear in Rates (PWLR) Lyapunov functions are introduced for a class of Chemical Reaction Networks (CRNs). In addition to their simple structure, these functions are robust with respect to arbitrary monotone reaction rates, of which mass-action is a special case. The existence of such functions ensures the convergence of trajectories towards equilibria, and guarantee their asymptotic stability with respect to the corresponding stoichiometric compatibility class. We give the definition of these Lyapunov functions, prove their basic properties, and provide algorithms for constructing them. Examples are provided, relationship with consensus dynamics are discussed, and future directions are elaborated.
In this paper, we propose an optimization-based sparse learning approach to identify the set of most influential reactions in a chemical reaction network. This reduced set of reactions is then employed to construct a reduced chemical reaction mechanism, which is relevant to chemical interaction network modeling. The problem of identifying influential reactions is first formulated as a mixed-integer quadratic program, and then a relaxation method is leveraged to reduce the computational complexity of our approach. Qualitative and quantitative validation of the sparse encoding approach demonstrates that the model captures important network structural properties with moderate computational load.
We introduce a mixed-integer linear programming (MILP) framework capable of determining whether a chemical reaction network possesses the property of being endotactic or strongly endotactic. The network property of being strongly endotactic is known to lead to persistence and permanence of chemical species under genetic kinetic assumptions, while the same result is conjectured but as yet unproved for general endotactic networks. The algorithms we present are the first capable of verifying endotacticity of chemical reaction networks for systems with greater than two constituent species. We implement the algorithms in the open-source online package CoNtRol and apply them to several well-studied biochemical examples, including the general $n$-site phosphorylation / dephosphorylation networks and a circadian clock mechanism.
We present a framework to transform the problem of finding a Lyapunov function of a Chemical Reaction Network (CRN) in concentration coordinates with arbitrary monotone kinetics into finding a common Lyapunov function for a linear parameter varying system in reaction coordinates. Alternative formulations of the proposed Lyapunov function is presented also. This is applied to reinterpret previous results by the authors on Piecewise Linear in Rates Lyapunov functions, and to establish a link with contraction analysis. Persistence and uniqueness of equilibria are discussed also.