No Arabic abstract
This paper is focuses on the computation of the positive moments of one-side correlated random Gram matrices. Closed-form expressions for the moments can be obtained easily, but numerical evaluation thereof is prone to numerical stability, especially in high-dimensional settings. This letter provides a numerically stable method that efficiently computes the positive moments in closed-form. The developed expressions are more accurate and can lead to higher accuracy levels when fed to moment based-approaches. As an application, we show how the obtained moments can be used to approximate the marginal distribution of the eigenvalues of random Gram matrices.
This paper addresses the development of analytical tools for the computation of the moments of random Gram matrices with one side correlation. Such a question is mainly driven by applications in signal processing and wireless communications wherein such matrices naturally arise. In particular, we derive closed-form expressions for the inverse moments and show that the obtained results can help approximate several performance metrics such as the average estimation error corresponding to the Best Linear Unbiased Estimator (BLUE) and the Linear Minimum Mean Square Error LMMSE or also other loss functions used to measure the accuracy of covariance matrix estimates.
In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed form expression for the per-cell sum-rate of this channel in high-SNR, when an intra-cell TDMA protocol is employed. Since the matrices of interest are tridiagonal, their eigenvectors can be considered as sequences with second order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two by two matrices. For the case where $K$ users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds.
A major hurdle in machine learning is scalability to massive datasets. One approach to overcoming this is to distribute the computational tasks among several workers. textit{Gradient coding} has been recently proposed in distributed optimization to compute the gradient of an objective function using multiple, possibly unreliable, worker nodes. By designing distributed coded schemes, gradient coded computations can be made resilient to textit{stragglers}, nodes with longer response time comparing to other nodes in a distributed network. Most such schemes rely on operations over the real or complex numbers and are inherently numerically unstable. We present a binary scheme which avoids such operations, thereby enabling numerically stable distributed computation of the gradient. Also, some restricting assumptions in prior work are dropped, and a more efficient decoding is given.
We tackle the problem of recovering a complex signal $boldsymbol xinmathbb{C}^n$ from quadratic measurements of the form $y_i=boldsymbol x^*boldsymbol A_iboldsymbol x$, where $boldsymbol A_i$ is a full-rank, complex random measurement matrix whose entries are generated from a rotation-invariant sub-Gaussian distribution. We formulate it as the minimization of a nonconvex loss. This problem is related to the well understood phase retrieval problem where the measurement matrix is a rank-1 positive semidefinite matrix. Here we study the general full-rank case which models a number of key applications such as molecular geometry recovery from distance distributions and compound measurements in phaseless diffractive imaging. Most prior works either address the rank-1 case or focus on real measurements. The several papers that address the full-rank complex case adopt the computationally-demanding semidefinite relaxation approach. In this paper we prove that the general class of problems with rotation-invariant sub-Gaussian measurement models can be efficiently solved with high probability via the standard framework comprising a spectral initialization followed by iterative Wirtinger flow updates on a nonconvex loss. Numerical experiments on simulated data corroborate our theoretical analysis.
The open problem of calculating the limiting spectrum (or its Shannon transform) of increasingly large random Hermitian finite-band matrices is described. In general, these matrices include a finite number of non-zero diagonals around their main diagonal regardless of their size. Two different communication setups which may be modeled using such matrices are presented: a simple cellular uplink channel, and a time varying inter-symbol interference channel. Selected recent information-theoretic works dealing directly with such channels are reviewed. Finally, several characteristics of the still unknown limiting spectrum of such matrices are listed, and some reflections are touched upon.