Do you want to publish a course? Click here

The transition matrix between the Specht and web bases is unipotent with additional vanishing entries

118   0   0.0 ( 0 )
 Added by Heather Russell
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We compare two important bases of an irreducible representation of the symmetric group: the web basis and the Specht basis. The web basis has its roots in the Temperley-Lieb algebra and knot-theoretic considerations. The Specht basis is a classic algebraic and combinatorial construction of symmetric group representations which arises in this context through the geometry of varieties called Springer fibers. We describe a graph that encapsulates combinatorial relations between each of these bases, prove that there is a unique way (up to scaling) to map the Specht basis into the web representation, and use this to recover a result of Garsia-McLarnan that the transition matrix between the Specht and web bases is upper-triangular with ones along the diagonal. We then strengthen their result to prove vanishing of certain additional entries unless a nesting condition on webs is satisfied. In fact we conjecture that the entries of the transition matrix are nonnegative and are nonzero precisely when certain directed paths exist in the web graph.



rate research

Read More

Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (like, e.g., Kazhdan-Lusztig polynomials). By flattening the braiding maps, webs can also be viewed as the basis elements of a symmetric-group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, that measure depths of regions inside the web. As an application, we resolve an open conjecture that the change-of-basis between the so-called Specht basis and web basis of this symmetric-group representation is unitriangular for $mathfrak{sl}_3$-webs. We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others. We also prove that though the new partial order for $mathfrak{sl}_3$-webs is a refinement of the previously-studied tableau order, the two partial orders do not agree for $mathfrak{sl}_3$.
142 - R.M. Green 2010
In a previous work (arXiv:0806.1503v2), we defined a family of subcomplexes of the $n$-dimensional half cube by removing the interiors of all half cube shaped faces of dimension at least $k$, and we proved that the homology of such a subcomplex is concentrated in degree $k-1$. This homology group supports a natural action of the Coxeter group $W(D_n)$ of type $D$. In this paper, we explicitly determine the characters (over ${Bbb C}$) of these homology representations, which turn out to be multiplicity free. Regarded as representations of the symmetric group $S_n$ by restriction, the homology representations turn out to be direct sums of certain representations induced from parabolic subgroups. The latter representations of $sym_n$ agree (over ${Bbb C}$) with the representations of $sym_n$ on the $(k-2)$-nd homology of the complement of the $k$-equal real hyperplane arrangement.
This paper considers the problem of matrix completion when the observed entries are noisy and contain outliers. It begins with introducing a new optimization criterion for which the recovered matrix is defined as its solution. This criterion uses the celebrated Huber function from the robust statistics literature to downweigh the effects of outliers. A practical algorithm is developed to solve the optimization involved. This algorithm is fast, straightforward to implement, and monotonic convergent. Furthermore, the proposed methodology is theoretically shown to be stable in a well defined sense. Its promising empirical performance is demonstrated via a sequence of simulation experiments, including image inpainting.
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metaplectic group). We classify all special unipotent representations of $G$ attached to $check{mathcal O}$, in the sense of Barbasch and Vogan. When $check{mathcal O}$ is of good parity, we construct all such representations of $G$ via the method of theta lifting. As a consequence of the construction and the classification, we conclude that all special unipotent representations of $G$ are unitarizable, as predicted by the Arthur-Barbasch-Vogan conjecture. We also determine precise structure of the associated cycles of special unipotent representations of $G$.
172 - Jie Xiao , Han Xu , Minghui Zhao 2021
For quantum group of affine type, Lusztig gave an explicit construction of the affine canonical basis by simple perverse sheaves. In this paper, we construct a bar-invariant basis by using a PBW basis arising from representations of the corresponding tame quiver. We prove that this bar-invariant basis coincides with Lusztigs canonical basis and obtain a concrete bijection between the elements in theses two bases. The index set of these bases is listed orderly by modules in preprojective, regular non-homogeneous, preinjective components and irreducible characters of symmetric groups. Our results are based on the work of Lin-Xiao-Zhang and closely related with the work of Beck-Nakajima. A crucial method in our construction is a generalization of that by Deng-Du-Xiao.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا