Vietoris topology on hyperspaces associated to a noncommutative compact space


Abstract in English

We study some topological spaces that can be considered as hyperspaces associated to noncommutative spaces. More precisely, for a NC compact space associated to a unital C*-algebra, we consider the set of closed projections of the second dual of the C*-algebra as the hyperspace of closed subsets of the NC space. We endow this hyperspace with an analog of Vietoris topology. In the case that the NC space has a quantum metric space structure in the sense of Rieffel we study the analogs of Hausdorff and infimum distances on the hyperspace. We also formulate some interesting problems about distances between sub-circles of a quantum torus.

Download