Topological Spin Liquid with Symmetry-Protected Edge States


Abstract in English

Topological spin liquids are robust quantum states of matter with long-range entanglement and possess many exotic properties such as the fractional statistics of the elementary excitations. Yet these states, short of local parameters like all topological states, are elusive for conventional experimental probes. In this work, we combine theoretical analysis and quantum Monte Carlo numerics on a frustrated spin model which hosts a $mathbb Z_2$ topological spin liquid ground state, and demonstrate that the presence of symmetry-protected gapless edge modes is a characteristic feature of the state, originating from the nontrivial symmetry fractionalization of the elementary excitations. Experimental observation of these modes on the edge would directly indicate the existence of the topological spin liquids in the bulk, analogous to the fact that the observation of Dirac edge states confirmed the existence of topological insulators.

Download