Do you want to publish a course? Click here

Existence and non-existence of minimal graphic and $p$-harmonic functions

99   0   0.0 ( 0 )
 Added by Ilkka Holopainen
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold $M$ with only one end if $M$ has asymptotically non-negative sectional curvature. On the other hand, we prove the existence of bounded non-constant minimal graphic and $p$-harmonic functions on rotationally symmetric Cartan-Hadamard manifolds under optimal assumptions on the sectional curvatures.



rate research

Read More

153 - Jurgen Jost , Jingyong Zhu 2019
In this paper, we discuss the general existence theory of Dirac-harmonic maps from closed surfaces via the heat flow for $alpha$-Dirac-harmonic maps and blow-up analysis. More precisely, given any initial map along which the Dirac operator has nontrivial minimal kernel, we first prove the short time existence of the heat flow for $alpha$-Dirac-harmonic maps. The obstacle to the global existence is the singular time when the kernel of the Dirac operator no longer stays minimal along the flow. In this case, the kernel may not be continuous even if the map is smooth with respect to time. To overcome this issue, we use the analyticity of the target manifold to obtain the density of the maps along which the Dirac operator has minimal kernel in the homotopy class of the given initial map. Then, when we arrive at the singular time, this density allows us to pick another map which has lower energy to restart the flow. Thus, we get a flow which may not be continuous at a set of isolated points. Furthermore, with the help of small energy regularity and blow-up analysis, we finally get the existence of nontrivial $alpha$-Dirac-harmonic maps ($alphageq1$) from closed surfaces. Moreover, if the target manifold does not admit any nontrivial harmonic sphere, then the map part stays in the same homotopy class as the given initial map.
126 - Jurgen Jost , Jingyong Zhu 2020
We study the existence of harmonic maps and Dirac-harmonic maps from degenerating surfaces to non-positive curved manifold via the scheme of Sacks and Uhlenbeck. By choosing a suitable sequence of $alpha$-(Dirac-)harmonic maps from a sequence of suitable closed surfaces degenerating to a hyperbolic surface, we get the convergence and a cleaner energy identity under the uniformly bounded energy assumption. In this energy identity, there is no energy loss near the punctures. As an application, we obtain an existence result about (Dirac-)harmonic maps from degenerating (spin) surfaces. If the energies of the map parts also stay away from zero, which is a necessary condition, both the limiting harmonic map and Dirac-harmonic map are nontrivial.
100 - Lu Chen , Guozhen Lu , Maochun Zhu 2021
Recently, the authors of the current paper established in [9] the existence of a ground-state solution to the following bi-harmonic equation with the constant potential or Rabinowitz potential: begin{equation} (-Delta)^{2}u+V(x)u=f(u) text{in} mathbb{R}^{4}, end{equation} when the nonlinearity has the special form $f(t)=t(exp(t^2)-1)$ and $V(x)geq c>0$ is a constant or the Rabinowitz potential. One of the crucial elements used in [9] is the Fourier rearrangement argument. However, this argument is not applicable if $f(t)$ is not an odd function. Thus, it still remains open whether the above equation with the general critical exponential nonlinearity $f(u)$ admits a ground-state solution even when $V(x)$ is a positive constant. The first purpose of this paper is to develop a Fourier rearrangement-free approach to solve the above problem. More precisely, we will prove that there is a threshold $gamma^{*}$ such that for any $gammain (0,gamma^*)$, the above equation with the constant potential $V(x)=gamma>0$ admits a ground-state solution, while does not admit any ground-state solution for any $gammain (gamma^{*},+infty)$. The second purpose of this paper is to establish the existence of a ground-state solution to the above equation with any degenerate Rabinowitz potential $V$ vanishing on some bounded open set. Among other techniques, the proof also relies on a critical Adams inequality involving the degenerate potential which is of its own interest.
In the early 1980s, S. T. Yau conjectured that any compact Riemannian three-manifold admits an infinite number of closed immersed minimal surfaces. We use min-max theory for the area functional to prove this conjecture in the positive Ricci curvature setting. More precisely, we show that every compact Riemannian manifold with positive Ricci curvature and dimension at most seven contains infinitely many smooth, closed, embedded minimal hypersurfaces. In the last section we mention some open problems related with the geometry of these minimal hypersurfaces.
We investigate a parabolic-elliptic system for maps $(u,v)$ from a compact Riemann surface $M$ into a Lorentzian manifold $Ntimes{mathbb{R}}$ with a warped product metric. That system turns the harmonic map type equations into a parabolic system, but keeps the $v$-equation as a nonlinear second order constraint along the flow. We prove a global existence result of the parabolic-elliptic system by assuming either some geometric conditions on the target Lorentzian manifold or small energy of the initial maps. The result implies the existence of a Lorentzian harmonic map in a given homotopy class with fixed boundary data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا