Even in the absence of resolved flares, the corona is heated to several million degrees. However, despite its importance for the structure, dynamics, and evolution of the solar atmosphere, the origin of this heating remains poorly understood. Several observational and theoretical considerations suggest that the heating is driven by small, impulsive energy bursts which could be Parker-style nanoflares (Parker 1988) that arise via reconnection within the tangled and twisted coronal magnetic field. The classical smoking gun (Klimchuk 2009; Cargill et al. 2013) for impulsive heating is the direct detection of widespread hot plasma (T > 6 MK) with a low emission measure. In recent years there has been great progress in the development of Transition Edge Sensor (TES) X-ray microcalorimeters that make them more ideal for studying the Sun. When combined with grazing-incidence focusing optics, they provide direct spectroscopic imaging over a broad energy band (0.5 to 10 keV) combined with extremely impressive energy resolution in small pixels, as low as 0.7 eV (FWHM) at 1.5 keV (Lee 2015), and 1.56 eV (FWHM) at 6 keV (Smith 2012), two orders of magnitude better than the current best traditional solid state photon-counting spectrometers. Decisive observations of the hot plasma associated with nanoflare models of coronal heating can be provided by new solar microcalorimeters. These measurements will cover the most important part of the coronal spectrum for searching for the nanoflare-related hot plasma and will characterize how much nanoflares can heat the corona both in active regions and the quiet Sun. Finally, microcalorimeters will enable to study all of this as a function of time and space in each pixel simultaneously a capability never before available.