For a smooth manifold $M$, possibly with boundary and corners, and a Lie group $G$, we consider a suitable description of gauge fields in terms of parallel transport, as groupoid homomorphisms from a certain path groupoid in $M$ to $G$. Using a cotriangulation $mathscr{C}$ of $M$, and collections of finite-dimensional families of paths relative to $mathscr{C}$, we define a homotopical equivalence relation of parallel transport maps, leading to the concept of an extended lattice gauge (ELG) field. A lattice gauge field, as used in Lattice Gauge Theory, is part of the data contained in an ELG field, but the latter contains further local topological information sufficient to reconstruct a principal $G$-bundle on $M$ up to equivalence. The space of ELG fields of a given pair $(M,mathscr{C})$ is a covering for the space of fields in Lattice Gauge Theory, whose connected components parametrize equivalence classes of principal $G$-bundles on $M$. We give a criterion to determine when ELG fields over different cotriangulations define equivalent bundles.