No Arabic abstract
For a smooth manifold $M$, possibly with boundary and corners, and a Lie group $G$, we consider a suitable description of gauge fields in terms of parallel transport, as groupoid homomorphisms from a certain path groupoid in $M$ to $G$. Using a cotriangulation $mathscr{C}$ of $M$, and collections of finite-dimensional families of paths relative to $mathscr{C}$, we define a homotopical equivalence relation of parallel transport maps, leading to the concept of an extended lattice gauge (ELG) field. A lattice gauge field, as used in Lattice Gauge Theory, is part of the data contained in an ELG field, but the latter contains further local topological information sufficient to reconstruct a principal $G$-bundle on $M$ up to equivalence. The space of ELG fields of a given pair $(M,mathscr{C})$ is a covering for the space of fields in Lattice Gauge Theory, whose connected components parametrize equivalence classes of principal $G$-bundles on $M$. We give a criterion to determine when ELG fields over different cotriangulations define equivalent bundles.
We study linearization of lattice gauge theory. Linearized theory approximates lattice gauge theory in the same manner as the loop O(n)-model approximates the spin O(n)-model. Under mild assumptions, we show that the expectation of an observable in linearized Abelian gauge theory coincides with the expectation in the Ising model with random edge-weights. We find a similar relation between Yang-Mills theory and 4-state Potts model. For the latter, we introduce a new observable.
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita equivalence between ordinary Yang-Mills theory with multi-valued gauge fields and noncommutative Yang-Mills theory with periodic gauge fields. Using this equivalence, we show that generic noncommutative gauge theories in the continuum can be regularized nonperturbatively by means of {it ordinary} lattice gauge theory with t~Hooft flux. In the case of irrational noncommutativity parameters, the rank of the gauge group of the commutative lattice theory must be sent to infinity in the continuum limit. As a special case, the construction includes the recent description of noncommutative Yang-Mills theories using twisted large $N$ reduced models. We study the coupling of noncommutative gauge fields to matter fields in the fundamental representation of the gauge group using the lattice formalism. The large mass expansion is used to describe the physical meaning of Wilson loops in noncommutative gauge theories. We also demonstrate Morita equivalence in the presence of fundamental matter fields and use this property to comment on the calculation of the beta-function in noncommutative quantum electrodynamics.
We discuss a general framework for the realization of a family of abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable to quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions originally proposed by Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4x4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices where we discuss in detail a protocol for the preparation of the ground state. We also comment on the relation between standard compact U(1) LGT and the model considered.
We compute nonequilibrium dynamics for classical-statistical SU(2) pure gauge theory on a lattice. We consider anisotropic initial conditions with high occupation numbers in the transverse plane on a characteristic scale ~ Q_s. This is used to investigate the very early stages of the thermalization process in the context of heavy-ion collisions. We find Weibel or primary instabilities with growth rates similar to those obtained from previous treatments employing anisotropic distributions of hard modes (particles) in the weak coupling limit. We observe secondary growth rates for higher-momentum modes reaching substantially larger values and we analyse them in terms of resummed loop diagrams beyond the hard-loop approximation. We find that a coarse grained pressure isotropizes bottom-up with a characteristic inverse rate of gamma^{-1} ~ 1 - 2 fm/c for coarse graining momentum scales of p < 1 GeV choosing an initial energy density for RHIC of epsilon = 30 GeV/fm^3. The nonequilibrium spatial Wilson loop is found to exhibit an area law and to become isotropic on a similar time scale.
Far-from-equilibrium dynamics of SU(2) gauge theory with Wilson fermions is studied in 1+1 space-time dimensions using a real-time lattice approach. Lattice improved Hamiltonians are shown to be very efficient in simulating Schwinger pair creation and emergent phenomena such as plasma oscillations. As a consequence, significantly smaller lattices can be employed to approach continuum physics in the infinite-volume limit as compared to unimproved implementations. This allows us to compute also higher-order correlation functions including four fermion fields, which give unprecedented insights into the real-time dynamics of the fragmentation process of strings between fermions and antifermions.