This is an introduction to: (1) the enumerative geometry of rational curves in equivariant symplectic resolutions, and (2) its relation to the structures of geometric representation theory. Written for the 2015 Algebraic Geometry Summer Institute.
The subjects in the title are interwoven in many different and very deep ways. I recently wrote several expository accounts [64-66] that reflect a certain range of developments, but even in their totality they cannot be taken as a comprehensive survey. In the format of a 30-page contribution aimed at a general mathematical audience, I have decided to illustrate some of the basic ideas in one very interesting example - that of HilbpC2, nq, hoping to spark the curiosity of colleagues in those numerous fields of study where one should expect applications.
Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 5-folds. We find recursions for meeting numbers of genus 0 curves, and we determine the contributions of moving multiple covers of genus 0 curves to the genus 1 Gromov-Witten invariants. The resulting invariants, conjectured to be integral, are analogous to the previously defined BPS counts for Calabi-Yau 3 and 4-folds. We comment on the situation in higher dimensions where new issues arise. Two main examples are considered: the local Calabi-Yau P^2 with balanced normal bundle 3O(-1) and the compact Calabi-Yau hypersurface X_7 in P^6. In the former case, a closed form for our integer invariants has been conjectured by G. Martin. In the latter case, we recover in low degrees the classical enumeration of elliptic curves by Ellingsrud and Stromme.
We construct a lax monoidal Topological Quantum Field Theory that computes Deligne-Hodge polynomials of representation varieties of the fundamental group of any closed manifold into any complex algebraic group $G$. As byproduct, we obtain formulas for these polynomials in terms of homomorphisms between the space of mixed Hodge modules on $G$. The construction is developed in a categorical-theoretic framework allowing its application to other situations.
We give an exposition of the Horn inequalities and their triple role characterizing tensor product invariants, eigenvalues of sums of Hermitian matrices, and intersections of Schubert varieties. We follow Belkales geometric method, but assume only basic representation theory and algebraic geometry, aiming for self-contained, concrete proofs. In particular, we do not assume the Littlewood-Richardson rule nor an a priori relation between intersections of Schubert cells and tensor product invariants. Our motivation is largely pedagogical, but the desire for concrete approaches is also motivated by current research in computational complexity theory and effective algorithms.
We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here random means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.