Do you want to publish a course? Click here

Derivation of Spin Torques of the Magnetic System in Broken Inversion Symmetry

60   0   0.0 ( 0 )
 Added by Changyeon Won
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new approach to derive spin torque in systems of broken inversion symmetry. It uses the concepts of asymmetric and directional spin-spin interactions to obtain their effective fields. We applied the effective fields into the Landau-Lifshitz equation and obtained spin torques. The model offers a new and general approach for spin dynamics, one that effectively merges the Dzyaloshinskii-Moriya interaction, spin transfer torques, and spin-orbit torque into the spin dynamics equation. We discussed how our model is imposed on the spin dynamics and compared our approach with the traditional discussions on spin dynamics.



rate research

Read More

167 - Xin-Zhong Yan , C. S. Ting 2012
With the two-band continuum model, we study the broken inversion and time-reversal symmetry state of electrons with finite-range repulsive interactions in bilayer graphene. With the analytical solution to the mean-field Hamiltonian, we obtain the electronic spectra. The ground state is gapped. In the presence of the magnetic field $B$, the energy gap grows with increasing $B$, in excellently agreement with the experimental observation. Such an energy gap behavior originates from the disappearance of a Landau level of $n$ = 0 and 1 states. The present result resolves explicitly the puzzle of the gap dependence of $B$.
81 - A. Meetsma 1998
At room-temperature NaV2O5 was found to have the centrosymmetric space group Pmmn. This space group implies the presence of only one kind of V site in contrast with previous reports of the non-centrosymmetric counterpart P21mn. This indicates a non-integer valence state of vanadium. Furthermore, this symmetry has consequences for the interpretation of the transition at 34 K, which was ascribed to a spin-Peierls transition of one dimensional chains of V4+.
242 - Xin-Zhong Yan , C. S. Ting 2012
On a lattice model, we study the possibility of existence of gapped broken inversion symmetry phase (GBISP) of electrons with long-range Coulomb interaction in bilayer graphene using both self-consistent Hartree-Fock approximation (SCHFA) and the renormalized-ring-diagram approximation (RRDA). RRDA takes into account the charge-density fluctuations beyond the mean field. While GBISP at low temperature and low carrier concentration is predicted by SCHFA, we show here the state can be destroyed by the charge-density fluctuations. We also present a numerical algorithm for calculating the self-energy of electrons with the singular long-range Coulomb interaction on the lattice model.
60 - Iksu Jang , Ki-Seok Kim 2017
Anomaly cancelation has been shown to occur in time-reversal symmetry-broken Weyl metals, which explains the existence of a Fermi arc. We extend this result in the case of inversion symmetry-broken Weyl metals. Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancelation explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in inversion symmetry-broken Weyl metals. In particular, we find that this pair of Fermi arcs gives rise to either quantized spin Hall or valley Hall effects, which corresponds to the quantized version of the charge Hall effect in time-reversal symmetry-broken Weyl metals.
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T_N < 41K is accompanied by ferroelectric order for T < 28K. To understand this, we establish the magnetic structure above and below the ferroelectric transition using neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally-modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا