We provide a generalization of the Deligne sheaf construction of intersection homology theory, and a corresponding generalization of Poincare duality on pseudomanifolds, such that the Goresky-MacPherson, Goresky-Siegel, and Cappell-Shaneson duality theorems all arise as special cases. Unlike classical intersection homology theory, our duality theorem holds with ground coefficients in an arbitrary PID and with no local cohomology conditions on the underlying space. Self-duality does require local conditions, but our perspective leads to a new class of spaces more general than the Goresky-Siegel IP spaces on which upper-middle perversity intersection homology is self dual. We also examine categories of perverse sheaves that contain our torsion-sensitive Deligne sheaves as intermediate extensions.