Do you want to publish a course? Click here

Fiber networks below the isostatic point: fracture without stress concentration

298   0   0.0 ( 0 )
 Added by Xiaoming Mao
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crack nucleation is a ubiquitous phenomena during materials failure, because stress focuses on crack tips. It is known that exceptions to this general rule arise in the limit of strong disorder or vanishing mechanical stability, where stress distributes over a divergent length scale and the material displays diffusive damage. Here we show, using simulations, that a class of diluted lattices displays a new critical phase when they are below isostaticity, where stress never concentrates, damage always occurs over a divergent length scale, and catastrophic failure is avoided.



rate research

Read More

We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The latter is implemented in compact analytical form using a qualitative method for the many-body Smoluchowski equation. The resulting nonlinear stress-strain (constitutive) relation is very simple, with few fitting parameters, yet contains all the microscopic physics. The theory is successfully tested against experimental data on metallic glasses, and it is able to reproduce the ubiquitous feature of stress-strain overshoot upon varying temperature and shear rate. A clear atomic-level interpretation is provided for the stress overshoot, in terms of the competition between the elastic instability caused by nonaffine deformation of the glassy cage and the stress buildup due to viscous dissipation.
Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching dominated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nature Physics, 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.
We have applied recent machine learning advances, deep convolutional neural network, to three-dimensional (voxels) soft matter data, generated by Molecular Dynamics computer simulation. We have focused on the structural and phase properties of a coarse-grained model of hydrated ionic surfactants. We have trained a classifier able to automatically detect the water quantity absorbed in the system, therefore associating to each hydration level the corresponding most representative nano-structure. Based on the notion of transfer learning, we have next applied the same network to the related polymeric ionomer Nafion, and have extracted a measure of the similarity of these configurations with those above. We demonstrate that on this basis it is possible to express the static structure factor of the polymer at fixed hydration level as a superposition of those of the surfactants at multiple water contents. We suggest that such a procedure can provide a useful, agnostic, data-driven, precise description of the multi-scale structure of disordered materials, without resorting to any a-priori model picture.
Using molecular dynamics simulations we study the static and dynamic properties of spherical nanoparticles (NPs) embedded in a disordered and polydisperse polymer network. Purely repulsive (RNP) as well as weakly attractive (ANP) polymer-NP interactions are considered. It is found that for both types of particles the NP dynamics at intermediate and at long times is controlled by the confinement parameter $C=sigma_N/lambda$, where $sigma_N$ is the NP diameter and $lambda$ is the dynamic localization length of the crosslinks. Three dynamical regimes are identified: i) For weak confinement ($C lesssim 1$) the NPs can freely diffuse through the mesh; ii) For strong confinement ($C gtrsim 1$) NPs proceed by means of activated hopping; iii) For extreme confinement ($C gtrsim 3$) the mean squared displacement shows on intermediate time scales a quasi-plateau since the NPs are trapped by the mesh for very long times. Escaping from this local cage is a process that depends strongly on the local environment, thus giving rise to an extremely heterogeneous relaxation dynamics. The simulation data are compared with the two main theories for the diffusion process of NPs in gels. Both theories give a very good description of the $C-$dependence of the NP diffusion constant, but fail to reproduce the heterogeneous dynamics at intermediate time scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا