Do you want to publish a course? Click here

New families of irreducible weight modules over $mathfrak{sl}_{3}$

98   0   0.0 ( 0 )
 Added by Kaiming Zhao
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $n>1$ be an integer, $alphain{mathbb C}^n$, $bin{mathbb C}$, and $V$ a $mathfrak{gl}_n$-module. We define a class of weight modules $F^alpha_{b}(V)$ over $sl_{n+1}$ using the restriction of modules of tensor fields over the Lie algebra of vector fields on $n$-dimensional torus. In this paper we consider the case $n=2$ and prove the irreducibility of such 5-parameter $mathfrak{sl}_{3}$-modules $F^alpha_{b}(V)$ generically. All such modules have infinite dimensional weight spaces and lie outside of the category of Gelfand-Tsetlin modules. Hence, this construction yields new families of irreducible $mathfrak{sl}_{3}$-modules.



rate research

Read More

For an irreducible module $P$ over the Weyl algebra $mathcal{K}_n^+$ (resp. $mathcal{K}_n$) and an irreducible module $M$ over the general liner Lie algebra $mathfrak{gl}_n$, using Shens monomorphism, we make $Potimes M$ into a module over the Witt algebra $W_n^+$ (resp. over $W_n$). We obtain the necessary and sufficient conditions for $Potimes M$ to be an irreducible module over $W_n^+$ (resp. $W_n$), and determine all submodules of $Potimes M$ when it is reducible. Thus we have constructed a large family of irreducible weight modules with many different weight supports and many irreducible non-weight modules over $W_n^+$ and $W_n$.
We classify the simple bounded weight modules of ${mathfrak{sl}(infty})$, ${mathfrak{o}(infty)}$ and ${mathfrak{sp}(infty)}$, and compute their annihilators in $U({mathfrak{sl}(infty}))$, $U({mathfrak{o}(infty))}$, $U({mathfrak{sp}(infty))}$, respectively.
We provide a classification and an explicit realization of all irreducible Gelfand-Tsetlin modules of the complex Lie algebra sl(3). The realization of these modules uses regular and derivative Gelfand-Tsetlin tableaux. In particular, we list all simple Gelfand-Tsetlin sl(3)-modules with infinite-dimensional weight spaces. Also, we express all simple Gelfand-Tsetlin sl(3)-modules as subquotionets of localized Gelfand-Tsetlin E_{21}-injective modules.
144 - Hideya Watanabe 2019
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group, and study their properties along the lines of the representation theory of weight modules over a quantum group. In several cases, we classify the finite-dimensional irreducible classical weight modules by a highest weight theory.
We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا