The light emitting diode (LED) nonlinearities distortion induced degradation in the performance of visible light communication (VLC) systems can be controlled by optimizing the DC bias point of the LED. In this paper, we theoretically analyze and experimentally demonstrate the effect of white LED DC bias on nonlinear modulation bandwidth and dynamic range of the VLC system. The linear dynamic range is enhanced by using series-connected LED chips, and the modulation bandwidth is extended to 40 MHz by post-equalization without using a blue filter. The experimental results well match the theoretical model of LED nonlinear modulation characteristics. The results show that the modulation bandwidth increases and saturates with an increase in LED DC bias current due to nonlinear effect of carrier lifetime and junction capacitance. The optimized DC-bias current that corresponds to the minimum BER increases with the increase of data rate. A 60-Mbps NRZ transmission can be achieved with BER threshold of 10-3 by properly adjusting LED DC bias point.