Do you want to publish a course? Click here

On the connection problem for Painleve I

126   0   0.0 ( 0 )
 Added by Oleg Lisovyy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dependence of the tau function of Painleve I equation on the generalized monodromy of the associated linear problem. In particular, we compute connection constants relating the tau function asymptotics on five canonical rays at infinity. The result is expressed in terms of dilogarithms of cluster type coordinates on the space of Stokes data.



rate research

Read More

In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painleve equations, with a particular emphasis on the discrete Painleve equations. The theory is controlled by the geometry of certain rational surfaces called the spaces of initial values, which are characterized by eight point configuration on $mathbb{P}^1timesmathbb{P}^1$ and classified according to the degeration of points. We give a systematic description of the equations and their various properties, such as affine Weyl group symmetries, hypergeomtric solutions and Lax pairs under this framework, by using the language of Picard lattice and root systems. We also provide with a collection of basic data; equations, point configurations/root data, Weyl group representations, Lax pairs, and hypergeometric solutions of all possible cases.
It was observed by Tod and later by Dunajski and Tod that the Boyer-Finley (BF) and the dispersionless Kadomtsev-Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-called central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painleve equations PIII and PII, respectively. The aim of our paper is threefold: -- Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). -- Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painleve equations PI - PVI, with PVI corresponding to the generic case of our classification. -- We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions.
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether the coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.
376 - Yusuke Sasano 2011
We find and study a two-parameter family of coupled Painleve II systems in dimension four with affine Weyl group symmetry of several types. Moreover, we find a three-parameter family of polynomial Hamiltonian systems in two variables $t,s$. Setting $s=0$, we can obtain an autonomous version of the coupled Painleve II systems. We also show its symmetry and holomorphy conditions.
In this paper we study a certain recurrence relation, that can be used to generate ladder operators for the Laguerre Unitary ensemble, from the point of view of Sakais geometric theory of Painleve equations. On one hand, this gives us one more detailed example of the appearance of discrete Painleve equations in the theory of orthogonal polynomials. On the other hand, it serves as a good illustration of the effectiveness of a recently proposed procedure on how to reduce such recurrences to some canonical discrete Painleve equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا