Do you want to publish a course? Click here

Mixed-symmetry fields in de Sitter space: a group theoretical glance

67   0   0.0 ( 0 )
 Added by Thomas Basile
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We rederive the characters of all unitary irreducible representations of the $(d+1)$-dimensional de Sitter spacetime isometry algebra $mathfrak{so}(1,d+1)$, and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We comment on a possible equivalent of the scalar singleton for the de Sitter (dS) spacetime.



rate research

Read More

689 - Matthew Dodelson 2012
Maldacena has shown that the wavefunction of the universe in de Sitter space can be viewed as the partition function of a conformal field theory. In this paper, we investigate this approach to the dS/CFT correspondence in further detail. We emphasize that massive bulk fields are dual to two primary operators on the boundary, which encode information about the two independent behaviors of bulk expectation values at late times. An operator statement of the duality is given, and it is shown that the resulting boundary correlators can be interpreted as transition amplitudes from the Bunch-Davies vacuum to an excited state in the infinite future. We also explain how these scattering amplitudes can be used to compute late-time Bunch-Davies expectation values, and comment on the effects of anomalies in the dual CFT on such expectation values.
We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametrizations of the boundary. These symmetries are spontaneously broken by the $AdS_2$ geometry and they are explicitly broken by the small deformation away from $AdS_2$. This pattern of spontaneous plus explicit symmetry breaking governs the gravitational backreaction of the system. It determines several gravitational properties such as the linear in temperature dependence of the near extremal entropy as well as the gravitational corrections to correlation functions. These corrections include the ones determining the growth of out of time order correlators that is indicative of chaos. These gravitational aspects can be described in terms of a Schwarzian derivative effective action for a reparametrization.
140 - Benjamin Shlaer 2009
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to the fact that the de Sitter Euclidean action is bounded below, allowing for an approximately de Sitter invariant false vacuum to be constructed.
We construct a class of extended shift symmetries for fields of all integer spins in de Sitter (dS) and anti-de Sitter (AdS) space. These generalize the shift symmetry, galileon symmetry, and special galileon symmetry of massless scalars in flat space to all symmetric tensor fields in (A)dS space. These symmetries are parametrized by generalized Killing tensors and exist for fields with particular discrete masses corresponding to the longitudinal modes of massive fields in partially massless limits. We construct interactions for scalars that preserve these shift symmetries, including an extension of the special galileon to (A)dS space, and discuss possible generalizations to interacting massive higher-spin particles.
133 - Lars Aalsma , Gary Shiu 2020
We consider small perturbations to a static three-dimensional de Sitter geometry. For early enough perturbations that satisfy the null energy condition, the result is a shockwave geometry that leads to a time advance in the trajectory of geodesics crossing it. This brings the opposite poles of de Sitter space into causal contact with each other, much like a traversable wormhole in Anti-de Sitter space. In this background, we compute out-of-time-order correlators (OTOCs) to asses the chaotic nature of the de Sitter horizon and find that it is maximally chaotic: one of the OTOCs we study decays exponentially with a Lyapunov exponent that saturates the chaos bound. We discuss the consequences of our results for de Sitter complementarity and inflation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا