Do you want to publish a course? Click here

Resilience of ranks of higher inclusion matrices

138   0   0.0 ( 0 )
 Added by Qing Xiang
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $n geq r geq s geq 0$ be integers and $mathcal{F}$ a family of $r$-subsets of $[n]$. Let $W_{r,s}^{mathcal{F}}$ be the higher inclusion matrix of the subsets in ${mathcal F}$ vs. the $s$-subsets of $[n]$. When $mathcal{F}$ consists of all $r$-subsets of $[n]$, we shall simply write $W_{r,s}$ in place of $W_{r,s}^{mathcal{F}}$. In this paper we prove that the rank of the higher inclusion matrix $W_{r,s}$ over an arbitrary field $K$ is resilient. That is, if the size of $mathcal{F}$ is close to ${n choose r}$ then $mbox{rank}_{K}(W_{r,s}^{mathcal{F}}) = mbox{rank}_{K}(W_{r,s})$, where $K$ is an arbitrary field. Furthermore, we prove that the rank (over a field $K$) of the higher inclusion matrix of $r$-subspaces vs. $s$-subspaces of an $n$-dimensional vector space over $mathbb{F}_q$ is also resilient if ${rm char}(K)$ is coprime to $q$.



rate research

Read More

We study the behaviour of the 2-rank of the adjacency matrix of a graph under Seidel and Godsil-McKay switching, and apply the result to graphs coming from graphical Hadamard matrices of order $4^m$. Starting with graphs from known Hadamard matrices of order $64$, we find (by computer) many Godsil-McKay switching sets that increase the 2-rank. Thus we find strongly regular graphs with parameters $(63,32,16,16)$, $(64,36,20,20)$, and $(64,28,12,12)$ for almost all feasible 2-ranks. In addition we work out the behaviour of the 2-rank for a graph product related to the Kronecker product for Hadamard matrices, which enables us to find many graphical Hadamard matrices of order $4^m$ for which the related strongly regular graphs have an unbounded number of different 2-ranks. The paper extends results from the article Switched symplectic graphs and their 2-ranks by the first and the last author.
The minimum rank of a simple graph $G$ is defined to be the smallest possible rank over all symmetric real matrices whose $ij$th entry (for $i eq j$) is nonzero whenever ${i,j}$ is an edge in $G$ and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7. This paper contains a list of minimum ranks for all graphs of order at most 7. We also present selected optimal matrices.
56 - Bo Chong , Hellmut Keiter , 2005
Based on the ranks of reduced density matrices, we derive necessary conditions for the separability of multiparticle arbitrary-dimensional mixed states, which are equivalent to sufficient conditions for entanglement. In a similar way we obtain necessary conditions for the separability of a given mixed state with respect to partitions of all particles of the system into subsets. The special case of pure states is discussed separately.
A {it sign pattern matrix} is a matrix whose entries are from the set ${+,-, 0}$. The minimum rank of a sign pattern matrix $A$ is the minimum of the ranks of the real matrices whose entries have signs equal to the corresponding entries of $A$. It is shown in this paper that for any $m times n$ sign pattern $A$ with minimum rank $n-2$, rational realization of the minimum rank is possible. This is done using a new approach involving sign vectors and duality. It is shown that for each integer $ngeq 9$, there exists a nonnegative integer $m$ such that there exists an $ntimes m$ sign pattern matrix with minimum rank $n-3$ for which rational realization is not possible. A characterization of $mtimes n$ sign patterns $A$ with minimum rank $n-1$ is given (which solves an open problem in Brualdi et al. cite{Bru10}), along with a more general description of sign patterns with minimum rank $r$, in terms of sign vectors of certain subspaces. A number of results on the maximum and minimum numbers of sign vectors of $k$-dimensional subspaces of $mathbb R^n$ are obtained. In particular, it is shown that the maximum number of sign vectors of $2$-dimensional subspaces of $mathbb R^n$ is $4n+1$. Several related open problems are stated along the way.
363 - H. Boos , F. Gohmann , A. Klumper 2017
We find the $ell$-weights and the $ell$-weight vectors for the highest $ell$-weight $q$-oscillator representations of the positive Borel subalgebra of the quantum loop algebra $U_q(mathcal L(mathfrak{sl}_{l+1}))$ for arbitrary values of $l$. Having this, we establish the explicit relationship between the $q$-oscillator and prefundamental representations. Our consideration allows us to conclude that the prefundamental representations can be obtained by tensoring $q$-oscillator representations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا