Do you want to publish a course? Click here

Language Modeling with Gated Convolutional Networks

72   0   0.0 ( 0 )
 Added by Yann Dauphin
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The pre-dominant approach to language modeling to date is based on recurrent neural networks. Their success on this task is often linked to their ability to capture unbounded context. In this paper we develop a finite context approach through stacked convolutions, which can be more efficient since they allow parallelization over sequential tokens. We propose a novel simplified gating mechanism that outperforms Oord et al (2016) and investigate the impact of key architectural decisions. The proposed approach achieves state-of-the-art on the WikiText-103 benchmark, even though it features long-term dependencies, as well as competitive results on the Google Billion Words benchmark. Our model reduces the latency to score a sentence by an order of magnitude compared to a recurrent baseline. To our knowledge, this is the first time a non-recurrent approach is competitive with strong recurrent models on these large scale language tasks.



rate research

Read More

In this paper, we investigate the effect of different hyperparameters as well as different combinations of hyperparameters settings on the performance of the Attention-Gated Convolutional Neural Networks (AGCNNs), e.g., the kernel window size, the number of feature maps, the keep rate of the dropout layer, and the activation function. We draw practical advice from a wide range of empirical results. Through the sensitivity analysis, we further improve the hyperparameters settings of AGCNNs. Experiments show that our proposals could achieve an average of 0.81% and 0.67% improvements on AGCNN-NLReLU-rand and AGCNN-SELU-rand, respectively; and an average of 0.47% and 0.45% improvements on AGCNN-NLReLU-static and AGCNN-SELU-static, respectively.
Language models (LMs) based on Long Short Term Memory (LSTM) have shown good gains in many automatic speech recognition tasks. In this paper, we extend an LSTM by adding highway networks inside an LSTM and use the resulting Highway LSTM (HW-LSTM) model for language modeling. The added highway networks increase the depth in the time dimension. Since a typical LSTM has two internal states, a memory cell and a hidden state, we compare various types of HW-LSTM by adding highway networks onto the memory cell and/or the hidden state. Experimental results on English broadcast news and conversational telephone speech recognition show that the proposed HW-LSTM LM improves speech recognition accuracy on top of a strong LSTM LM baseline. We report 5.1% and 9.9% on the Switchboard and CallHome subsets of the Hub5 2000 evaluation, which reaches the best performance numbers reported on these tasks to date.
Recurrent neural networks have proved to be an effective method for statistical language modeling. However, in practice their memory and run-time complexity are usually too large to be implemented in real-time offline mobile applications. In this paper we consider several compression techniques for recurrent neural networks including Long-Short Term Memory models. We make particular attention to the high-dimensional output problem caused by the very large vocabulary size. We focus on effective compression methods in the context of their exploitation on devices: pruning, quantization, and matrix decomposition approaches (low-rank factorization and tensor train decomposition, in particular). For each model we investigate the trade-off between its size, suitability for fast inference and perplexity. We propose a general pipeline for applying the most suitable methods to compress recurrent neural networks for language modeling. It has been shown in the experimental study with the Penn Treebank (PTB) dataset that the most efficient results in terms of speed and compression-perplexity balance are obtained by matrix decomposition techniques.
The abolitionist movement of the nineteenth-century United States remains among the most significant social and political movements in US history. Abolitionist newspapers played a crucial role in spreading information and shaping public opinion around a range of issues relating to the abolition of slavery. These newspapers also serve as a primary source of information about the movement for scholars today, resulting in powerful new accounts of the movement and its leaders. This paper supplements recent qualitative work on the role of women in abolitions vanguard, as well as the role of the Black press, with a quantitative text modeling approach. Using diachronic word embeddings, we identify which newspapers tended to lead lexical semantic innovations -- the introduction of new usages of specific words -- and which newspapers tended to follow. We then aggregate the evidence across hundreds of changes into a weighted network with the newspapers as nodes; directed edge weights represent the frequency with which each newspaper led the other in the adoption of a lexical semantic change. Analysis of this network reveals pathways of lexical semantic influence, distinguishing leaders from followers, as well as others who stood apart from the semantic changes that swept through this period. More specifically, we find that two newspapers edited by women -- THE PROVINCIAL FREEMAN and THE LILY -- led a large number of semantic changes in our corpus, lending additional credence to the argument that a multiracial coalition of women led the abolitionist movement in terms of both thought and action. It also contributes additional complexity to the scholarship that has sought to tease apart the relation of the abolitionist movement to the womens suffrage movement, and the vexed racial politics that characterized their relation.
Event Extraction plays an important role in information-extraction to understand the world. Event extraction could be split into two subtasks: one is event trigger extraction, the other is event arguments extraction. However, the F-Score of event arguments extraction is much lower than that of event trigger extraction, i.e. in the most recent work, event trigger extraction achieves 80.7%, while event arguments extraction achieves only 58%. In pipelined structures, the difficulty of event arguments extraction lies in its lack of classification feature, and the much higher computation consumption. In this work, we proposed a novel Event Extraction approach based on multi-layer Dilate Gated Convolutional Neural Network (EE-DGCNN) which has fewer parameters. In addition, enhanced local information is incorporated into word features, to assign event arguments roles for triggers predicted by the first subtask. The numerical experiments demonstrated significant performance improvement beyond state-of-art event extraction approaches on real-world datasets. Further analysis of extraction procedure is presented, as well as experiments are conducted to analyze impact factors related to the performance improvement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا