Recent ab initio lattice studies have found that the interactions between alpha particles (4He nuclei) are sensitive to seemingly minor details of the nucleon-nucleon force such as interaction locality. In order to uncover the essential physics of this puzzling phenomenon without unnecessary complications, we study a simple model involving two-component fermions in one spatial dimension. We probe the interaction between two bound dimers for several different particle-particle interactions and measure an effective potential between the dimers using external point potentials which act as numerical tweezers. We find that the strength and range of the local part of the particle-particle interactions play a dominant role in shaping the interactions between the dimers and can even determine the overall sign of the effective potential.
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about $a_0/a_1approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.
We study ground and radial excitations of flavor singlet and flavored pseudoscalar mesons within the framework of the rainbow-ladder truncation using an infrared massive and finite interaction in agreement with recent results for the gluon-dressing function from lattice QCD and Dyson-Schwinger equations. Whereas the ground-state masses and decay constants of the light mesons as well as charmonia are well described, we confirm previous observations that this truncation is inadequate to provide realistic predictions for the spectrum of excited and exotic states. Moreover, we find a complex conjugate pair of eigenvalues for the excited $D_{(s)}$ mesons, which indicates a non-Hermiticity of the interaction kernel in the case of heavy-light systems and the present truncation. Nevertheless, limiting ourselves to the leading contributions of the Bethe-Salpeter amplitudes, we find a reasonable description of the charmed ground states and their respective decay constants.
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
The three-body system inside the unitary window is studied for three equal bosons and three equal fermions having $1/2$ spin-isospin symmetry. We perform a gaussian characterization of the window using a gaussian potential to define trajectories for low-energy quantities as binding energies and phase shifts. On top of this trajectories experimental values are placed or, when not available, quantities calculated using realistic potentials that are known to reproduce experimental values. The intention is to show that the gaussian characterization of the window, thought as a contact interaction plus range corrections, captures the main low-energy properties of real systems as for example three helium atoms or three nucleons. The mapping of real systems on the gaussian trajectories is taken as indication of universal behavior. The trajectories continuously link the physical points to the unitary limit allowing for the explanation of strong correlations between observables appearing in real systems and which are known to exist in that limit. In the present study we focus on low-energy bound, scattering and virtual states.
Using effective field theory methods, we calculate for the first time the complete fourth-order term in the Fermi-momentum or $k_{rm F} a_s$ expansion for the ground-state energy of a dilute Fermi gas. The convergence behavior of the expansion is examined for the case of spin one-half fermions and compared against quantum Monte-Carlo results, showing that the Fermi-momentum expansion is well-converged at this order for $| k_{rm F} a_s | lesssim 0.5$.