A lagrangian which describes interactions between a soliton and a background field is derived for sigma models whose target is a symmetric space. The background field modifies the usual moduli space approximation to soliton dynamics in two ways: by introducing a potential energy, and by inducing a Kaluza-Klein metric on the moduli space. In the particular case of the Skyrme model, this lagrangian is quantised and shown to agree with the leading pion-nucleon term in the chiral effective lagrangian, which is widely used in theoretical nuclear physics. Thus chiral perturbation theory could be considered a low energy limit of the Skyrme model.