No Arabic abstract
A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 $mu$s. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 $mu$s. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 $mu$s.
We develop a novel approach for a Time Projection Chamber (TPC) concept suitable for deployment in kilotonne scale detectors, with a charge-readout system free from reconstruction ambiguities, and a robust TPC design that reduces high-voltage risks while increasing the coverage of the light collection system. This novel concept could be deployed as a Far Detector module in the Deep Underground Neutrino Experiment (DUNE) neutrino-oscillation experiment. For the charge-readout system, we use the charge-collection pixels and associated application-specific integrated circuits currently being developed for the liquid argon (LAr) component of the DUNE Near Detector design, ArgonCube. In addition, we divide the TPC into a number or shorter drift volumes, reducing the total voltage used to drift the ionisation electrons, and minimising the stored energy per TPC. Segmenting the TPC also contains scintillation light, allowing for precise trigger localisation and a more expansive light-readout system. Furthermore, the design opens the possibility of replacing or upgrading components. These augmentations could substantially improve reliability and sensitivity, particularly for low energy signals, in comparison to a traditional monolithic LArTPCs with projective charge-readout.
Directional detection of nuclear recoils is appealing because it can confirm the cosmological origin of a dark matter signal and distinguish between different neutrino sources. Gas Time Projection Chambers (TPCs) enable directional recoil detection due to the high spatial granularity with which they can image a recoils ionization track, especially if micro-pattern gaseous detectors (MPGDs) are utilized. A key challenge in these detectors at low energies is identifying and rejecting background electron recoil events cause by gamma rays from radioactive contaminants in the detector materials and the environment. For gas TPCs with high readout segmentation, we can define observables that can distinguish electron and nuclear recoils, even at keV-scale energies, based on the measured ionizations topology. We define such observables and show that they outperform the traditionally used discriminant, dE/dx, by up to three orders of magnitude. Furthermore, these new observables work well even at ionization energies below 10 keV and remain robust even in the regime where directionality fails.
We present a novel electrical technique to measure the tension of wires in multi-wire drift chambers. We create alternating electric fields by biasing adjacent wires on both sides of a test wire with a superposition of positive and negative DC voltages on an AC signal ($V_{rm AC} pm V_{rm DC}$). The resulting oscillations of the wire will display a resonance at its natural frequency, and the corresponding change of the capacitance will lead to a measurable current. This scheme is scalable to multiple wires and therefore enables us to precisely measure the tension of a large number of wires in a short time. This technique can also be applied at cryogenic temperatures making it an attractive solution for future large time-projection chambers such as the DUNE detector. We present the concept, an example implementation and its performance in a real-world scenario and discuss the limitations of the sensitivity of the system in terms of voltage and wire length.
We report the testing of a charcoal-based Kr-83m source for use in calibrating a low background two-phase liquid xenon detector. Kr-83m atoms produced through the decay of Rb-83 are introduced into a xenon detector by flowing xenon gas past the Rb-83 source. 9.4 keV and 32.1 keV transitions from decaying 83Krm nuclei are detected through liquid xenon scintillation and ionization. The characteristics of the Kr-83m source are analyzed and shown to be appropriate for a low background liquid xenon detector. Introduction of Kr-83m allows for quick, periodic calibration of low background noble liquid detectors at low energy.
A number of liquid argon time projection chambers (LAr TPCs) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).