Do you want to publish a course? Click here

The Einstein-Boltzmann equations revisited

76   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The linear Einstein-Boltzmann equations describe the evolution of perturbations in the universe and its numerical solutions play a central role in cosmology. We revisit this system of differential equations and present a detailed investigation of its mathematical properties. For this purpose, we focus on a simplified set of equations aimed at describing the broad features of the matter power spectrum. We first perform an eigenvalue analysis and study the onset of oscillations in the system signaled by the transition from real to complex eigenvalues. We then provide a stability criterion of different numerical schemes for this linear system and estimate the associated step-size. We elucidate the stiffness property of the Einstein-Boltzmann system and show how it can be characterized in terms of the eigenvalues. While the parameters of the system are time dependent making it non-autonomous, we define an adiabatic regime where the parameters vary slowly enough for the system to be quasi-autonomous. We summarize the different regimes of the system for these different criteria as function of wave number $k$ and scale factor $a$. We also provide a compendium of analytic solutions for all perturbation variables in 6 limits on the $k$-$a$ plane and express them explicitly in terms of initial conditions. These results are aimed to help the further development and testing of numerical cosmological Boltzmann solvers.



rate research

Read More

Inspired in the Standard Model of Elementary Particles, the Einstein Yang-Mills Higgs action with the Higgs field in the SU(2) representation was proposed in Class. Quantum Grav. 32 (2015) 045002 as the element responsible for the dark energy phenomenon. We revisit this action emphasizing in a very important aspect not sufficiently explored in the original work and that substantially changes its conclusions. This aspect is the role that the Yang-Mills Higgs interaction plays at fixing the gauge for the Higgs field, in order to sustain a homogeneous and isotropic background, and at driving the late accelerated expansion of the Universe by moving the Higgs field away of the minimum of its potential and holding it towards an asymptotic finite value. We analyse the dynamical behaviour of this system and supplement this analysis with a numerical solution whose initial conditions are in agreement with the current observed values for the density parameters. This scenario represents a step towards a successful merging of cosmology and well-tested particle physics phenomenology.
We perform an analysis where Einsteins field equation is derived by means of very simple thermodynamical arguments. Our derivation is based on a consideration of the properties of a very small, spacelike two-plane in a uniformly accelerating motion.
The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of potentials associated to an original (seed) solution of the E-M equations are transformed to a new set, either by continuous transformations or by discrete transformations. In this article, continuous transformations are considered. Accordingly, originating from the so-called $gamma_A$-metric, other exact solutions to the E-M equations are recovered and discussed.
Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the set of potentials associated to a known solution are transformed into a new set, either by continuous transformations or by discrete transformations. In view of this method, and upon consideration of continuous transformations, we arrive at some exact, stationary axisymmetric solutions to the Einstein field equations in vacuum, that may be of geometrical or/and physical interest.
The Lukash metric is a homogeneous gravitational wave which at late times approximates the behaviour of a generic class of spatially homogenous cosmological models with monotonically decreasing energy density. The transcription from Brinkmann to Baldwin-Jeffery-Rosen (BJR) to Bianchi coordinates is presented and the relation to a Sturm-Liouville equation is explained. The 6-parameter isometry group is derived. In the Bianchi VII range of parameters we have two BJR transciptions. However using either of them induces a mere relabeling of the geodesics and isometries. Following pioneering work of Siklos, we provide a self-contained account of the geometry and global structure of the spacetime. The latter contains a Killing horizon to the future of which the spacetime resembles an anisotropic version of the Milne cosmology and to the past of which it resemble the Rindler wedge.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا