Do you want to publish a course? Click here

Dynamical modelling of galactic disc outskirts

77   0   0.0 ( 0 )
 Added by Albert Bosma
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

I review briefly some dynamical models of structures in the outer parts of disc galaxies, including models of polar rings, tidal tails and bridges. I then discuss the density distribution in the outer parts of discs. For this, I compare observations to results of a model in which the disc galaxy is in fact the remnant of a major merger, and find good agreement. This comparison includes radial profiles of the projected surface density and of stellar age, as well as time evolution of the break radius and of the inner and outer disc scale lengths. I also compare the radial projected surface density profiles of dynamically motivated mono-age populations and find that, compared to older populations, younger ones have flatter density profiles in the inner region and steeper in the outer one. The break radius, however, does not vary with stellar age, again in good agreement with observations.



rate research

Read More

Many dynamical models of the Milky Way halo require assumptions that the distribution function of a tracer population should be independent of time (i.e., a steady state distribution function) and that the underlying potential is spherical. We study the limitations of such modelling by applying a general dynamical model with minimal assumptions to a large sample of galactic haloes from cosmological $N$-body and hydrodynamical simulations. Using dark matter particles as dynamical tracers, we find that the systematic uncertainties in the measured mass and concentration parameters typically have an amplitude of 25% to 40%. When stars are used as tracers, however, the systematic uncertainties can be as large as a factor of $2-3$. The systematic uncertainties are not reduced by increasing the tracer sample size and vary stochastically from halo to halo. These systematic uncertainties are mostly driven by underestimated statistical noise caused by correlated phase-space structures that violate the steady state assumption. The number of independent phase-space structures inferred from the uncertainty level sets a limiting sample size beyond which a further increase no longer significantly improves the accuracy of dynamical inferences. The systematic uncertainty level is determined by the halo merger history, the shape and environment of the halo. Our conclusions apply generally to any spherical steady-state model.
Galactic model plays an important role in the microlensing field, not only for analyses of individual events but also for statistics of the ensemble of events. However, the Galactic models used in the field varies, and some are unrealistically simplified. Here we tested three Galactic disc dynamic models, the first is a simple standard model that was widely used in this field, whereas the other two consider the radial dependence of the velocity dispersion, and in the last model, the asymmetric drift. We found that for a typical lens mass $M_{rm L}=0.5M_{odot}$, the two new dynamical models predict $sim16%$ or $sim5%$ less long-timescale events (e.g., microlensing timescale $t_{rm E}>300$ days) and $sim 5%$ and $sim 3.5%$ more short-timescale events ($t_{rm E}<3$ days) than the standard model. Moreover, the microlensing event rate as a function of Einstein radius $theta_{rm E}$ or microlensing parallax $pi_{rm E}$ also shows some model dependence (a few percent). The two new models also have an impact on the total microlensing event rate. This result will also to some degree affect the Bayesian analysis of individual events, but overall, the impact is small. However, we still recommend that modelers should be more careful when choosing the Galactic model, especially in statistical works involving Bayesian analyses of a large number of events. Additionally, we find the asymptotic power-law behaviors in both $theta_{rm E}$ and $pi_{rm E}$ distributions, and we provide a simple model to understand them.
We present a study of the distribution of X-ray detected active galactic nuclei (AGN) in the five most massive, $M_{500}^{SZ}>10^{14} M_{odot}$ , and distant, z$sim$1, galaxy clusters in the textit{Planck} and South Pole Telescope (SPT)textit{} surveys. The spatial and thermodynamic individual properties of each cluster have been defined with unprecedented accuracy at this redshift using deep X-ray observations. This is an essential property of our sample in order to precisely determine the $R_{500}^{Y_{textrm x}}$ radius of the clusters. For our purposes, we computed the X-ray point-like source surface density in 0.5$R_{500}^{Y_{textrm x}}$ wide annuli up to a clustercentric distance of 4$R_{500}^{Y_{textrm x}}$, statistically subtracting the background and accounting for the respective average density of optical galaxies. We found a significant excess of X-ray point sources between 2 and 2.5$R_{500}^{Y_{textrm x}}$ at the 99.9% confidence level. The results clearly display for the first time strong observational evidence of AGN triggering in the outskirts of high-redshift massive clusters with such a high statistical significance. We argue that the particular conditions at this distance from the cluster centre increase the galaxy merging rate, which is probably the dominant mechanism of AGN triggering in the outskirts of massive clusters.
Using hydrodynamical simulations, we study how well the underlying gravitational potential of a galaxy cluster can be modelled dynamically with different types of tracers. In order to segregate different systematics and the effects of varying estimator performances, we first focus on applying a generic minimal assumption method (oPDF) to model the simulated haloes using the full 6-D phasespace information. We show that the halo mass and concentration can be recovered in an ensemble unbiased way, with a stochastic bias that varies from halo to halo, mostly reflecting deviations from steady state in the tracer distribution. The typical systematic uncertainty is $sim 0.17$ dex in the virial mass and $sim 0.17$ dex in the concentration as well when dark matter particles are used as tracers. The dynamical state of satellite galaxies are close to that of dark matter particles, while intracluster stars are less in a steady state, resulting in a $sim$ 0.26 dex systematic uncertainty in mass. Compared with galactic haloes hosting Milky-Way-like galaxies, cluster haloes show a larger stochastic bias in the recovered mass profiles. We also test the accuracy of using intracluster gas as a dynamical tracer modelled through a generalised hydrostatic equilibrium equation, and find a comparable systematic uncertainty in the estimated mass to that using dark matter. Lastly, we demonstrate that our conclusions are largely applicable to other steady-state dynamical models including the spherical Jeans equation, by quantitatively segregating their statistical efficiencies and robustness to systematics. We also estimate the limiting number of tracers that leads to the systematics-dominated regime in each case.
94 - Andrew P. Cooper 2017
Current data broadly support trends of galaxy surface brightness profile amplitude and shape with total stellar mass predicted by state-of-the-art Lambda-CDM cosmological simulations, although recent results show signs of interesting discrepancies, particularly for galaxies less massive than the Milky Way. Here I discuss how perhaps the largest contribution to such discrepancies can be inferred almost directly from how well a given model agrees with the observed present-day galaxy stellar mass function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا