Do you want to publish a course? Click here

A web portal for hydrodynamical, cosmological simulations

87   0   0.0 ( 0 )
 Added by Antonio Ragagnin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This article describes a data center hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data center has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) {sc ClusterInspect} visualizes properties of member galaxies of a selected galaxy cluster; (II) {sc SimCut} returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) {sc Smac} creates idealised 2D maps of various, physical quantities and observables of a selected object; (IV) {sc Phox} generates virtual X-ray observations with specifications of various current and upcoming instruments.



rate research

Read More

In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (Spmhd) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from divergence B related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. 2002 to give good results and prevent numerical artifacts from growing. Additionally, we demonstrate that certain current Spmhd implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in Spmhd at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical errors at small scales.
We study the properties of two bars formed in fully cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies. In one case, the bar formed in a system with disc, bulge and halo components and is relatively strong and long, as could be expected for a system where the spheroid strongly influences the evolution. The second bar is less strong, shorter, and formed in a galaxy with no significant bulge component. We study the strength and length of the bars, the stellar density profiles along and across the bars and the velocity fields in the bar region. We compare them with the results of dynamical (idealised) simulations and with observations, and find, in general, a good agreement, although we detect some important differences as well. Our results show that more or less realistic bars can form naturally in a $Lambda$CDM cosmology, and open up the possibility to study the bar formation process in a more consistent way than previously done, since the host galaxies grow, accrete matter and significantly evolve during the formation and evolution of the bar.
168 - Maria E. De Rossi 2015
The evolution of the metal content of galaxies and its relations to other global properties [such as total stellar mass (M*), circular velocity, star formation rate (SFR), halo mass, etc.] provides important constraints on models of galaxy formation. Here we examine the evolution of metallicity scaling relations of simulated galaxies in the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological simulations. We make comparisons to observations of the correlation of gas-phase abundances with M* (the mass-metallicity relation, MZR), as well as with both M* and SFR or gas mass fraction (the so-called 3D fundamental metallicity relations, FMRs). The simulated galaxies follow the observed local MZR and FMRs over an order of magnitude in M*, but overpredict the metallicity of massive galaxies (log M* > 10.5), plausibly due to inefficient feedback in this regime. We discuss the origin of the MZR and FMRs in the context of galactic outflows and gas accretion. We examine the evolution of mass-metallicity relations defined using different elements that probe the three enrichment channels (SNII, SNIa, and AGB stars). Relations based on elements produced mainly by SNII evolve weakly, whereas those based on elements produced preferentially in SNIa/AGB exhibit stronger evolution, due to the longer timescales associated with these channels. Finally, we compare the relations of central and satellite galaxies, finding systematically higher metallicities for satellites, as observed. We show this is due to the removal of the metal poor gas reservoir that normally surrounds galaxies and acts to dilute their gas-phase metallicity (via cooling/accretion onto the disk), but is lost due to ram pressure stripping for satellites.
We present a study of hydrodynamic drag forces in smoothed particle simulations. In particular, the deceleration of a resolution-limited cold clump of gas moving through a hot medium is examined. It is found that the drag for subsonic velocities exceeds that predicted by simple physical approximations. This is shown to be a result of the hydrodynamical method which encourages the accretion of particles from the hot medium onto a shell around the cold clump, effectively increasing the radius of the clump. For sonic and supersonic velocities, the drag is shown to be dependent on the effective cross section of the clump. The consequences for cosmological simulations are discussed.
225 - Tom Theuns 2015
Simulations of galaxy formation follow the gravitational and hydrodynamical interactions between gas, stars and dark matter through cosmic time. The huge dynamic range of such calculations severely limits strong scaling behaviour of the community codes in use, with load-imbalance, cache inefficiencies and poor vectorisation limiting performance. The new swift code exploits task-based parallelism designed for many-core compute nodes interacting via MPI using asynchronous communication to improve speed and scaling. A graph-based domain decomposition schedules interdependent tasks over available resources. Strong scaling tests on realistic particle distributions yield excellent parallel efficiency, and efficient cache usage provides a large speed-up compared to current codes even on a single core. SWIFT is designed to be easy to use by shielding the astronomer from computational details such as the construction of the tasks or MPI communication. The techniques and algorithms used in SWIFT may benefit other computational physics areas as well, for example that of compressible hydrodynamics. For details of this open-source project, see www.swiftsim.com
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا