Do you want to publish a course? Click here

The ArDM Liquid Argon Time Projection Chamber at the Canfranc Underground Laboratory: a ton-scale detector for Dark Matter Searches

132   0   0.0 ( 0 )
 Added by Andre Rubbia
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an active target of 850 kg, ArDM represents an important milestone in the quest for Dark Matter with LAr. We present the experimental apparatus currently installed underground at the Laboratorio Subterraneo de Canfranc (LSC), Spain. We show first data recorded during a single-phase commissioning run in 2015 (ArDM Run I), which overall confirm the good and stable performance of the ton-scale LAr detector.



rate research

Read More

Liquid Argon Time Projection Chambers are planned to comprise a central role in the future of the U.S. High Energy Physics neutrino program. In particular, this detector technology will form the basis for the 40 kton Deep Underground Neutrino Experiment (DUNE). In this paper we take as a starting point the dual phase far detector design proposed by the DUNE experiment and ask what changes are necessary to allow one of the four 10 kt modules to be sensitive to heavy Weakly Interacting Massive Particle (WIMP) dark matter. We show that with control over backgrounds and the use of low radioactivity argon, which may be commercially available on that timescale, along with a significant increase in light detection, one DUNE-like module gives a competitive WIMP detection sensitivity, particularly above a dark matter mass of 100 GeV.
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time projection chamber designed for direct Dark Matter searches. Such a device allows to explore the low energy frontier in LAr with a charge imaging detector. The ionization charge is extracted from the liquid into the gas phase and there amplified by the use of a Large Electron Multiplier in order to reduce the detection threshold. Direct detection of the ionization charge with fine spatial granularity, combined with a measurement of the amplitude and time evolution of the associated primary scintillation light, provide powerful tools for the identification of WIMP interactions against the background due to electrons, photons and possibly neutrons if scattering more than once. A one ton LAr detector is presently installed on surface at CERN to fully test all functionalities and it will be soon moved to an underground location. We will emphasize here the lessons learned from such a device for the design of a large LAr TPC for neutrino oscillation, proton decay and astrophysical neutrinos searches.
ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30,keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.
ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC (Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.
The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length of $155 pm 28$ cm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا