Fading AGN Candidates: AGN Histories and Outflow Signatures


Abstract in English

We consider energy budgets and radiative history of 8 fading AGN, identified from mismatch between the ionizion of very extended (>10 kpc) ionized clouds and the luminosity of the nucleus viewed directly. All show significant fading on ~50,000-year timescales. We explore the use of minimum ionizing luminosity Q derived from photoionization balance in the brightest pixels in H-alpha at each projected radius. Tests using PG QSOs, and one target with detailed photoionization modeling, suggest that we can derive useful histories of individual AGN; the minimum ionizing luminosity is always an underestimate and subject to fine structure in the ionized material. These tests suggest that the underestimation from the upper envelope of Q values is roughly constant for a given object. These AGN show rapid drops and standstills; the common feature is a rapid drop in the last 20,000 years before our view of the nucleus. E-folding timescales are mostly thousands of years, with a few episodes as short as 400. In the limit of largely obscured AGN, we find additional evidence for fading, comparing lower limits from recombination balance and the maximum luminosities derived from from infrared fluxes. We compare these long-term light curves to simulations of AGN accretion; the strongest variations on these timespans are seen in models with strong and local feedback. Gemini integral-field optical spectroscopy shows a very limited role for outflows in these structures. While rings and loops of emission are common, their kinematic structure shows some to be in regular rotation. UGC 7342 exhibits local signatures of outflows <300 km/s, largely associated with very diffuse emission. Only in the Teacup AGN do we see outflow signatures of order 1000 km/s. Clouds around these fading AGN consist largely of tidal debris being externally illuminated but not displaced by AGN outflows. (Abridged)

Download