Do you want to publish a course? Click here

Constructing backbone network by using tinker algorithm

314   0   0.0 ( 0 )
 Added by Zhiwei He
 Publication date 2016
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.



rate research

Read More

Complex networks provide us a new view for investigation of immune systems. In this paper we collect data through STRING database and present a model with cooperation network theory. The cytokine-protein network model we consider is constituted by two kinds of nodes, one is immune cytokine types which can act as acts, other one is protein type which can act as actors. From act degree distribution that can be well described by typical SPL -shifted power law functions, we find that HRAS.TNFRSF13C.S100A8.S100A1.MAPK8.S100A7.LIF.CCL4.CXCL13 are highly collaborated with other proteins. It reveals that these mediators are important in cytokine-protein network to regulate immune activity. Dyad act degree distribution is another important property to generalized collaboration network. Dyad is two proteins and they appear in one cytokine collaboration relationship. The dyad act degree distribution can be well described by typical SPL functions. The length of the average shortest path is 1.29. These results show that this model could describe the cytokine-protein collaboration preferably
Network optimization strategies for the process of synchronization have generally focused on the re-wiring or re-weighting of links in order to: (1) expand the range of coupling strengths that achieve synchronization, (2) expand the basin of attraction for the synchronization manifold, or (3) lower the average time to synchronization. A new optimization goal is proposed in seeking the minimum subset of the edge set of the original network that enables the same essential ability to synchronize. We call this type of minimal spanning subgraph an Essential Synchronization Backbone (ESB) of the original system, and we present two algorithms for computing this subgraph. One is by an exhaustive search and the other is a method of approximation for this combinatorial problem. The solution spaces that result from different choices of dynamical systems and coupling vary with the level of hierarchical structure present and also the number of interwoven central cycles. These may provide insight into synchronization as a process of sharing and transferring information. Applications can include the important problem in civil engineering of power grid hardening, where new link creation may be costly, but instead, the defense of certain key links to the functional process may be prioritized.
Complex biological functions are carried out by the interaction of genes and proteins. Uncovering the gene regulation network behind a function is one of the central themes in biology. Typically, it involves extensive experiments of genetics, biochemistry and molecular biology. In this paper, we show that much of the inference task can be accomplished by a deep neural network (DNN), a form of machine learning or artificial intelligence. Specifically, the DNN learns from the dynamics of the gene expression. The learnt DNN behaves like an accurate simulator of the system, on which one can perform in-silico experiments to reveal the underlying gene network. We demonstrate the method with two examples: biochemical adaptation and the gap-gene patterning in fruit fly embryogenesis. In the first example, the DNN can successfully find the two basic network motifs for adaptation - the negative feedback and the incoherent feed-forward. In the second and much more complex example, the DNN can accurately predict behaviors of essentially all the mutants. Furthermore, the regulation network it uncovers is strikingly similar to the one inferred from experiments. In doing so, we develop methods for deciphering the gene regulation network hidden in the DNN black box. Our interpretable DNN approach should have broad applications in genotype-phenotype mapping.
124 - R. Mansilla , R. Mendozas 2010
The network of 5823 cities of Mexico with a population more than 5000 inhabitants is studied. Our analysis is focused to the spectral properties of the adjacency matrix, the small-world properties of the network, the distribution of the clustering coefficients and the degree distribution of the vertices. The connection of these features with the spread of epidemics on this network is also discussed.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for the investigation of three-dimensional structures of biological molecules such as proteins. Determining a protein structure is essential for understanding its function and alterations in function which lead to disease. One of the major challenges of the post-genomic era is to obtain structural and functional information on the many unknown proteins encoded by thousands of newly identified genes. The goal of this research is to design an algorithm capable of automating the analysis of backbone protein NMR data by implementing AI strategies such as greedy and A* search.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا