Type II origin of dyonic gaugings


Abstract in English

Dyonic gaugings of four-dimensional supergravity typically exhibit a richer vacuum structure compared to their purely electric counterparts, but their higher-dimensional origin often remains more mysterious. We consider a class of dyonic gaugings with gauge groups of the type (SO(p,q)xSO(p,q))$ltimes N$ with $N$ nilpotent. Using generalized Scherk-Schwarz reductions of exceptional field theory, we show how these four-dimensional gaugings may be consistently embedded in Type II supergravity upon compactification around products of spheres and hyperboloids. As an application, we give the explicit uplift of the N=4 AdS$_4$ vacuum of the theory with gauge group (SO(6)xSO(1,1))$ltimes T^{12}$ into a supersymmetric AdS$_4$x$M_5$x$S^1$ S-fold solution of IIB supergravity. The internal space $M_5$ is a squashed $S^5$ preserving an SO(4)$ subset $ SO(6) subset of its isometries.

Download