A scanning tunneling microscope is used to generate the electroluminescence of phthalocyanine molecules deposited on NaCl/Ag(111). Photon spectra reveal an intense emission line at 1.9 eV that corresponds to the fluorescence of the molecules, and a series of weaker red-shifted lines. Based on a comparison with Raman spectra acquired on macroscopic molecular crystals, these spectroscopic features can be associated to the vibrational modes of the molecules and provide a detailed chemical fingerprint of the probed species. Maps of the vibronic features reveal sub- molecularly-resolved structures whose patterns are related to the symmetry of the probed vibrational modes.