No Arabic abstract
The clockwork mechanism has recently been proposed as a natural way to generate hierarchies among parameters in quantum field theories. The mechanism is characterized by a very specific pattern of spontaneous and explicit symmetry breaking, and the presence of new light states referred to as `gears. In this paper we begin by investigating the self-interactions of these gears in a scalar clockwork model and find a parity-like selection rule at all orders in the fields. We then proceed to investigate how the clockwork mechanism can be realized in 5D linear dilaton models from the spontaneous symmetry breaking of a complex bulk scalar field. We also discuss how the clockwork mechanism is manifest in the scalar components of 5D gauge theories in the linear dilaton model, and build their 4D deconstructed analogue. Finally we discuss attempts at building both 4D and 5D realizations of a non-abelian scalar clockwork mechanism, where in the latter we consider scenarios in which the Goldstone bosons arise from 5D scalar and 5D gauge fields.
Motivated by recent constructions of TeV-scale strongly-coupled dynamics, either associated with the Higgs sector itself as in pseudo-Nambu-Goldstone boson (pNGB) Higgs models or in theories of asymmetric dark matter, we show that stable solitonic Q- balls can be formed from light pion-like pNGB fields carrying a conserved global quantum number in the presence of the Higgs field. We focus on the case of thick-wall Q-balls, where solutions satisfying all constraints are shown to exist over a range of parameter values. In the limit that our approximations hold, the Q-balls are weakly bound and parametrically large, and the form of the interactions of the light physical Higgs with the Q-ball is determined by the breaking of scale symmetry.
The idea to have Higgs doublets as pseudo Nambu-Goldstone (PsNG) multiplet is examined in the framework of supersymmetric E_6 unified theory. We show that extra PsNG multiplets other than the expected Higgs doublets necessarily appear in the E_6 case. If we demand that the extra PsNG multiplets neither disturb the gauge coupling unification nor make the color gauge coupling diverge before unification occurs, only possibility for the extra PsNG is 10+bar{10} of SU(5). This is realized when the symmetry breaking E_6 to SO(10) occurs in the phi(27)+phi(bar{27}) sector while E_6 to SU(4)_Ctimes SU(2)_Ltimes U(1)times U(1) in the Sigma(78) sector. The existence of 10+bar{10} multiplets with mass around 1 TeV is therefore a prediction of this E_6 PsNG scenario. Implication of their existence on the proton decay is also discussed.
We respond to the criticism raised in the paper arXiv:1704.07831.
We consider the interplay between explicit and spontaneous symmetry breaking in strongly coupled field theories. Some well-known statements, such as the Gell-Mann-Oakes-Renner relation, descend directly from the Ward identities and have thus a general relevance. Such Ward identities are recovered in gauge/gravity dual setups through holographic renormalization. In a simple paradigmatic three dimensional toy-model, we find analytic expressions for the two-point correlators which match all the quantum field theoretical expectations. Moreover, we have access to the full spectrum, which is reminiscent of linear confinement.
We study chiral symmetry restoration by analyzing thermal properties of QCDs (pseudo-)Goldstone bosons, especially the pion. The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions. To obtain the correlation functions, we solve the Dyson-Schwinger equations and the inhomogeneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation. In the chiral limit, the pion and its partner sigma degenerate at the critical temperature $T_c$. At $T gtrsim T_c$, it is found that the pion rapidly dissociates, which signals deconfinement phase transition. Beyond the chiral limit, the pion dissociation temperature can be used to define the pseudo-critical temperature of chiral phase crossover, which is consistent with that obtained by the maximum point of the chiral susceptibility. The parallel analysis for kaon and pseudoscalar $sbar{s}$ suggests that heavy mesons may survive above $T_c$.