No Arabic abstract
In a previous work, we described the Minimal Model Program in the family of $Qbb$-Gorenstein projective horospherical varieties, by studying certain continuous changes of moment polytopes of polarized horospherical varieties. Here, we summarize the results of the previous work and we explain how to generalize them in order to describe the Log Minimal Model Program for pairs $(X,D)$ when $X$ is a projective horospherical variety.
We describe the Minimal Model Program in the family of $mathbb{Q}$-Gorenstein projective horospherical varieties, by studying a family of polytopes defined from the moment polytope of a Cartier divisor of the variety we begin with. In particular, we generalize the results on MMP in toric varieties due to M. Reid, and we complete the results on MMP in spherical varieties due to M. Brion in the case of horospherical varieties.
The main results of this paper are already known (V.V. Shokurov, the non-vanishing theorem, 1985). Moreover, the non-$mathbb{Q}$-factorial MMP was more recently considered by O~Fujino, in the case of toric varieties (Equivariant completions of toric contraction morphisms, 2006), for klt pairs (Special termination and reduction to pl flips, 2007) and more generally for log-canonical pairs (Foundation of the minimal model program, 2014). Here we rewrite the proofs of some of these results, by following the proofs given by Y. Kawamata, K. Matsuda, and K. Matsuki (Introduction to the minimal model problem, 1985) of the same results in $mathbb{Q}$-factorial MMP. And, in the family of $mathbb{Q}$-Gorenstein spherical varieties, we answer positively to the questions of existence of flips and of finiteness of sequences of flips. I apologize for the first version of this paper, which I wrote without knowing that these results already exist.
We introduce the notion of generalized MR log canonical surfaces and establish the minimal model theory for generalized MR log canonical surfaces in full generality.
We establish the minimal model theory for $mathbb Q$-factorial log surfaces and log canonical surfaces in Fujikis class $mathcal C$.
I construct a correspondence between the Schubert cycles on the variety of complete flags in C^n and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SL_n(C) with a strictly dominant highest weight. The construction is based on a geometric presentation of Schubert cells by Bernstein-Gelfand-Gelfand using Demazure modules. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand-Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.