Do you want to publish a course? Click here

Non-Commutative Vector Bundles for Non-Unital Algebras

131   0   0.0 ( 0 )
 Added by Adam Rennie
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We revisit the characterisation of modules over non-unital $C^*$-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutative case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical index and finite Watatani index.



rate research

Read More

We prove a Caratheodory-Fejer type interpolation theorem for certain matrix convex sets in $C^d$ using the Blecher-Ruan-Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyi-Verbovetzkii for the d-dimensional non-commutative polydisc.
77 - Jesse Burke 2018
Given a graded module over a commutative ring, we define a dg-Lie algebra whose Maurer-Cartan elements are the strictly unital A-infinity algebra structures on that module. We use this to generalize Positselskis result that a curvature term on the bar construction compensates for a lack of augmentation, from a field to arbitrary commutative base ring. We also use this to show that the reduced Hochschild cochains control the strictly unital deformation functor. We motivate these results by giving a full development of the deformation theory of a nonunital A-infinity algebra.
We consider a family of dynamical systems (A,alpha,L) in which alpha is an endomorphism of a C*-algebra A and L is a transfer operator for alpha. We extend Exels construction of a crossed product to cover non-unital algebras A, and show that the C*-algebra of a locally finite graph can be realised as one of these crossed products. When A is commutative, we find criteria for the simplicity of the crossed product, and analyse the ideal structure of the crossed product.
Boolean, free and monotone cumulants as well as relations among them, have proven to be important in the study of non-commutative probability theory. Quite notably, Boolean cumulants were successfully used to study free infinite divisibility via the Boolean Bercovici--Pata bijection. On the other hand, in recent years the concept of infinitesimal non-commutative probability has been developed, together with the notion of infinitesimal cumulants which can be useful in the context of combinatorial questions. In this paper, we show that the known relations among free, Boolean and monotone cumulants still hold in the infinitesimal framework. Our approach is based on the use of Grassmann algebra. Formulas involving infinitesimal cumulants can be obtained by applying a formal derivation to known formulas. The relations between the various types of cumulants turn out to be captured via the shuffle algebra approach to moment-cumulant relations in non-commutative probability theory. In this formulation, (free, Boolean and monotone) cumulants are represented as elements of the Lie algebra of infinitesimal characters over a particular combinatorial Hopf algebra. The latter consists of the graded connected double tensor algebra defined over a non-commutative probability space and is neither commutative nor cocommutative. In this note it is shown how the shuffle algebra approach naturally extends to the notion of infinitesimal non-commutative probability space. The basic step consists in replacing the base field as target space of linear Hopf algebra maps by the Grassmann algebra over the base field. We also consider the infinitesimal analog of the Boolean Bercovici--Pata map.
We discuss a version of the Chevalley--Eilenberg cohomology in characteristic $2$, where the alternating cochains are replaced by symmetric ones.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا