No Arabic abstract
The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ~310 fs, respectively; the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm2.
We describe a two-color pump-probe scanning magneto-optical Kerr effect (MOKE) microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast `white light supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.
Recent studies suggest that an exemplary Kondo insulator SmB6 belongs to a new class of topological insulators (TIs), in which non-trivial spin-polarized metallic states emerge on surface upon the formation of Kondo hybridization gap in the bulk. Remarkably, the bulk resistivity reaches more than 20 Ohm cm at 4 K, making SmB6 a candidate for a so-called bulk-insulating TI. We here investigate optical-pulse responses of SmB6 by pump-and-probe photoemission spectroscopy. Surface photovoltage effect is observed below ~90 K. This indicates that an optically-active band bending region develops beneath the novel metallic surface upon the bulk-gap evolution. The photovoltaic effect persists for >200 microsec, which is long enough to be detected by electronics devices, and could be utilized for optical gating of the novel metallic surface.
A theoretical frame for pump-probe photoemission is presented. The approach is based on a general formulation using the Keldysh formalism for the lesser Greens function to describe the real-time evolution of the electronic degrees of freedom in the initial state after a strong pump pulse that drives the system out of equilibrium. The final state is represented by a time-reversed low-energy electron diffraction state. Our one-step description is related to Pendrys original formulation of the photoemission process as close as possible. The formalism allows for a quantitative calculation of time-dependent photocurrent for simple metals where a picture of effectively independent electrons is assumed as reliable. The theory is worked out for valence- and core-electron excitations. It comprises the study of different relativistic effects as a function of the pump-probe delay.
We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ~7 eV, delivering under typical conditions >10^12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.
The Planck constant, with its mathematical symbol $h$, is a fundamental constant in quantum mechanics that is associated with the quantization of light and matter. It is also of fundamental importance to metrology, such as the definition of ohm and volt, and the latest definition of kilogram. One of the first measurements to determine the Planck constant is based on the photoelectric effect, however, the values thus obtained so far have exhibited a large uncertainty. The accepted value of the Planck constant, 6.62607015$times$10$^{-34}$ J$cdot$s, is obtained from one of the most precise methods, the Kibble balance, which involves quantum Hall effect, Josephson effect and the use of the International Prototype of the Kilogram (IPK) or its copies. Here we present a precise determination of the Planck constant by modern photoemission spectroscopy technique. Through the direct use of the Einsteins photoelectric equation, the Planck constant is determined by measuring accurately the energy position of the gold Fermi level using light sources with various photon wavelengths. The precision of the measured Planck constant, 6.62610(13)$times$10$^{-34}$ J$cdot$s, is four to five orders of magnitude improved from the previous photoelectric effect measurements. It has rendered photoemission method to become one of the most accurate methods in determining the Planck constant. We propose that this direct method of photoemission spectroscopy has advantages and a potential to further increase its measurement precision of the Planck constant to be comparable to the most accurate methods that are available at present.