Do you want to publish a course? Click here

The hypergroupoid of boundary conditions for local quantum observables

78   0   0.0 ( 0 )
 Added by Karl-Henning Rehren
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the definition of hypergroups by Sunder, and we associate a hypergroup to a type III subfactor $Nsubset M$ of finite index, whose canonical endomorphism $gammainmathrm{End}(M)$ is multiplicity-free. It is realized by positive maps of $M$ that have $N$ as fixed points. If the depth is $>2$, this hypergroup is different from the hypergroup associated with the fusion algebra of $M$-$M$ bimodules that was Sunders original motivation to introduce hypergroups. We explain how the present hypergroup, associated with a suitable subfactor, controls the composition of transparent boundary conditions between two isomorphic quantum field theories, and that this generalizes to a hypergroupoid of boundary conditions between different quantum field theories sharing a common subtheory.



rate research

Read More

In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type $Itimes N$ where $I$ is an interval of the real line and $N$ is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configurations as we consider all possible boundary conditions that are allowed to be imposed on the scalar fields. We employ the spectral zeta function formalism in the framework of scattering theory in order to obtain an expression for the Casimir energy and the corresponding Casimir force on the piston. We provide explicit results for the Casimir force when the manifold $N$ is a $d$-dimensional sphere and a disk.
We study the self adjoint extensions of a class of non maximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank one perturbations (in the sense of cite{AK}) of the Laplace operator, namely the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space time with an infinite conducting plate and in the presence of a point like impurity. We use the relative zeta determinant (as defined in cite{Mul} and cite{SZ}) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function, and for the Casimir force.
We extend duality between the quantum integrable Gaudin models with boundary and the classical Calogero-Moser systems associated with root systems of classical Lie algebras $B_N$, $C_N$, $D_N$ to the case of supersymmetric ${rm gl}(m|n)$ Gaudin models with $m+n=2$. Namely, we show that the spectra of quantum Hamiltonians for all such magnets being identified with the classical particles velocities provide the zero level of the classical action variables.
In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferromagnetic models which have an exact symmetry between low-temperature phases. We give a survey of these results and discuss possibilities to extend them to some situations where many pure states can coexist. An idea of the proofs as well as the reformulation of our results in the language of Newman-Stein metastates are also presented.
Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge invariant) vector potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا