Global geometry on moduli of local systems for surfaces with boundary


Abstract in English

We show that every coarse moduli space, parametrizing complex special linear rank two local systems with fixed boundary traces on a surface with nonempty boundary, is log Calabi-Yau in that it has a normal projective compactification with trivial log canonical divisor. We connect this to a novel symmetry of generating series for counts of essential multicurves on the surface.

Download